Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 13(7): 1444-52, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11298806

ABSTRACT

Intracerebroventricular (i.c.v.) administration of the novel hypothalamic neuropeptide orexin-A stimulates food intake in rats, and delays the onset of behavioural satiety (i.e. the natural transition from feeding to resting). Furthermore, preliminary findings with the selective orexin-1 receptor antagonist, SB-334867, suggest that orexin-A regulation of food intake is mediated via the orexin-1 receptor. At present, however, little is known about either the intrinsic effects of SB-334867 on the normal structure of feeding behaviour, or its effects upon orexin-A-induced behavioural change. In the present study, we have employed a continuous monitoring technique to characterize the effects of SB-334867 (3-30 mg/kg, i.p.) on the microstructure of rat behaviour during a 1-h test with palatable wet mash. Administered alone, SB-334867 (30 mg/kg, but not lower doses) significantly reduced food intake and most active behaviours (eating, grooming, sniffing, locomotion and rearing), while increasing resting. Although suggestive of a behaviourally nonselective (i.e. sedative) action, the structure of feeding behaviour was well-preserved at this dose level, with the reduction in behavioural output clearly attributable to an earlier onset of behavioural satiety. As previously reported, orexin-A (10 microg per rat i.c.v.) stimulated food intake, increased grooming and delayed the onset of behavioural satiety. Pretreatment with SB-334867 dose-dependently blocked these effects of orexin-A, with significant antagonism evident at dose levels (3-10 mg/kg) below those required to produce intrinsic behavioural effects under present test conditions. Together, these findings strongly support the view that orexin-A is involved in the regulation of feeding patterns and that this influence is mediated through the orexin-1 receptor.


Subject(s)
Benzoxazoles/pharmacology , Carrier Proteins/pharmacology , Hyperphagia/metabolism , Intracellular Signaling Peptides and Proteins , Neuropeptides/pharmacology , Receptors, Neuropeptide/antagonists & inhibitors , Satiety Response/drug effects , Urea/pharmacology , Animals , Appetitive Behavior/drug effects , Body Weight , Eating/drug effects , Hyperphagia/chemically induced , Injections, Intraventricular , Male , Naphthyridines , Orexin Receptors , Orexins , Rats , Rats, Inbred Strains , Receptors, G-Protein-Coupled , Receptors, Neuropeptide/metabolism , Urea/analogs & derivatives
2.
Regul Pept ; 96(1-2): 71-84, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11102655

ABSTRACT

Although intracerebroventricular (i.c.v.) administration of orexin-A has been reported to stimulate food intake and/or feeding behaviour in rats, mice and goldfish, little attention has thus far been paid to its effects on normal patterns of feeding. In the present study, a continuous monitoring technique was used to characterise the effects of this novel neuropeptide on the microstructure of rat behaviour during a 1-h test with palatable wet mash. Particular attention was devoted to the behavioural satiety sequence, in which feeding is followed by grooming and resting. Although results confirmed the hyperphagic effects of orexin-A (3.33-30.0 microg i.c. v.), gross behavioural analysis failed to reveal any reliable effects of peptide treatment on eating, drinking, sniffing, grooming, resting, locomotion or rearing. However, microstructural analysis revealed behavioural effects of orexin-A that are both dose- and time-dependent. At lower doses (3.33-10.0 microg), orexin-A primarily delayed behavioural satiety, i.e. the normal transition from eating to resting. In contrast, the 30 microg dose initially induced a sedative-like effect, significantly suppressing eating and other active behaviours for the first 15-20 min of the test period. This sedative-like effect resulted in a phase-shifting of the entire behavioural sequence with higher than control levels of eating, grooming, locomotion, rearing and sniffing observed over the second half of the test session. Present findings illustrate the advantages of microstructural behavioural analysis and suggest that the hyperphagic response to low doses of orexin-A results largely from a delay in behavioural satiety while that seen in response to high doses may occur in rebound to initial behavioural suppression. Further studies will be required to confirm the identity of the specific orexin receptors (i.e. OX(1) or OX(2)) involved in mediating the dose-dependent behavioural effects reported.


Subject(s)
Behavior, Animal/drug effects , Carrier Proteins/administration & dosage , Carrier Proteins/pharmacology , Eating/drug effects , Intracellular Signaling Peptides and Proteins , Neuropeptides/administration & dosage , Neuropeptides/pharmacology , Satiety Response/drug effects , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Drinking/drug effects , Feeding Behavior/drug effects , Grooming/drug effects , Male , Motor Activity/drug effects , Orexins , Rats , Rats, Inbred Strains , Rest , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...