Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vis Neurosci ; 23(1): 61-77, 2006.
Article in English | MEDLINE | ID: mdl-16597351

ABSTRACT

The retinotopic organization of striate and several extrastriate areas of ferret cortex has been established. Here we describe the representation of the visual field on the Suprasylvian visual area (Ssy). This cortical region runs mediolaterally along the posterior bank of the suprasylvian sulcus, and is distinct from adjoining areas in anatomical architecture. The Ssy lies immediately rostral to visual area 21, medial to lateral temporal areas, and lateral to posterior parietal areas. In electrophysiological experiments we made extracellular recordings in adult ferrets. We find that single and multiunit receptive fields range in size from 2 deg x 4 deg to 21 deg x 52 deg. The total visual field representation in Ssy spans over 70 deg in azimuth in the contralateral hemifield (with a small incursion into the ipsilateral hemifield), and from +36 deg to -30 deg in elevation. There are often two representations of the horizontal meridian. Furthermore, the location of the transition from upper to lower fields varies among animals. General features of topography are confirmed in anatomical experiments in which we made tracer injections into different locations in Ssy, and determined the location of retrograde label in area 17. Both isoelevation and isoazimuth lines can span substantial rostrocaudal and mediolateral distances in cortex, sometimes forming closed contours. This topography results in cortical magnifications averaging 0.07 mm/deg in elevation and 0.06 mm/deg in azimuth; however, some contours can run in such a way that it is possible to move a large distance on cortex without moving in the visual field. Because of these irregularities, Ssy contains a coarse representation of the contralateral visual field.


Subject(s)
Brain Mapping , Retina/anatomy & histology , Visual Cortex/anatomy & histology , Visual Fields , Visual Pathways/anatomy & histology , Animals , Cholera Toxin/metabolism , Female , Ferrets , Image Processing, Computer-Assisted/methods , Neurons/physiology , Visual Cortex/metabolism , Visual Pathways/metabolism
2.
J Comp Neurol ; 487(3): 312-31, 2005 Jul 04.
Article in English | MEDLINE | ID: mdl-15892103

ABSTRACT

Interareal feedback connections are a fundamental aspect of cortical architecture, yet many aspects of their organization and functional relevance remain poorly understood. Previous studies have investigated the topography of feedback projections from extrastriate cortex to macaque area 17. We have extended this analysis to the ferret. We made restricted injections of cholera toxin B (CTb) into ferret area 17 and mapped the distribution of retrogradely labeled cells in extrastriate cortex. In addition to extensive label spreading within area 17, we found dense cell label in areas 18, 19, and 21 and the suprasylvian cortex and sparser connections from the lateral temporal and posterior parietal cortex. We made extensive physiological assessments of magnification factors in the extrastriate visual cortex and used these measures to convert the spread of labeled cortex in millimeters into a span in degrees of visual field. We also directly measured the visuotopic extents of receptive fields in the regions containing labeled cells in cases in which we made both CTb injections and physiological recordings in the same animals; we then compared the aggregate receptive field (ARF) of the labeled region in each extrastriate area with that of the injection site. In areas 18, 19, and 21, receptive fields of cells in regions containing labeled neurons overlapped those at the injection site but spanned a greater distance in visual space than the ARF of the injection site. The broad visuotopic extent of feedback connections is consistent with the suggestion that they contribute to response modulation by stimuli beyond the classical receptive field.


Subject(s)
Brain Mapping , Neural Pathways/cytology , Neurons/cytology , Visual Cortex/cytology , Visual Fields/physiology , Animals , Feedback/physiology , Ferrets , Models, Animal , Neural Pathways/physiology , Neurons/physiology , Synaptic Transmission/physiology , Visual Cortex/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...