Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Cell Mol Life Sci ; 79(1): 33, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34988680

ABSTRACT

The identification of two variants of the canonical pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, Orai1α and Orai1ß, in mammalian cells arises the question whether they exhibit different functional characteristics. Orai1α and Orai1ß differ in the N-terminal 63 amino acids, exclusive of Orai1α, and show different sensitivities to Ca2+-dependent inactivation, as well as distinct ability to form arachidonate-regulated channels. We have evaluated the role of both Orai1 variants in the activation of TRPC1 in HeLa cells. We found that Orai1α and Orai1ß are required for the maintenance of regenerative Ca2+ oscillations, while TRPC1 plays a role in agonist-induced Ca2+ influx but is not essential for Ca2+ oscillations. Using APEX2 proximity labeling, co-immunoprecipitation and the fluorescence of G-GECO1.2 fused to Orai1α our results indicate that agonist stimulation and Ca2+ store depletion enhance Orai1α-TRPC1 interaction. Orai1α is essential for TRPC1 plasma membrane location and activation. Thus, TRPC1 function in HeLa cells depends on Ca2+ influx through Orai1α exclusively.


Subject(s)
Cell Membrane/metabolism , ORAI1 Protein/metabolism , TRPC Cation Channels/metabolism , Calcium/metabolism , Cations , HeLa Cells , Humans , Mutant Proteins/metabolism , Protein Binding , Stromal Interaction Molecule 1/metabolism
3.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916304

ABSTRACT

The intracellular calcium concentration ([Ca2+]i) modulation plays a key role in the regulation of cellular growth and survival in normal cells and failure of [Ca2+]i homeostasis is involved in tumor initiation and progression. Here we showed that inhibition of Furin by its naturally occurring inhibitor the prodomain ppFurin in the MDA-MB-231 breast cancer cells resulted in enhanced store-operated calcium entry (SOCE) and reduced the cell malignant phenotype. Expression of ppFurin in a stable manner in MDA-MB-231 and the melanoma MDA-MB-435 cell lines inhibits Furin activity as assessed by in vitro digestion assays. Accordingly, cell transfection experiments revealed that the ppFurin-expressing cells are unable to adequately process the proprotein convertase (PC) substrates vascular endothelial growth factor C (proVEGF-C) and insulin-like growth factor-1 receptor (proIGF-1R). Compared to MDA-MB-435 cells, expression of ppFurin in MDA-MB-231 and BT20 cells significantly enhanced SOCE and induced constitutive Ca2+ entry. The enhanced SOCE is impaired by inhibition of Orai channels while the constitutive Ca2+ entry is attenuated by silencing or inhibition of TRPC6 or inhibition of Orai channels. Analysis of TRPC6 activation revealed its upregulated tyrosine phosphorylation in ppFurin-expressing MDA-MB-231 cells. In addition, while ppFurin had no effect on MDA-MB-435 cell viability, in MDA-MB-231 cells ppFurin expression reduced their viability and ability to migrate and enhanced their sensitization to the apoptosis inducer hydrogen peroxide and similar results were observed in BT20 cells. These findings suggest that Furin inhibition by ppFurin may be a useful strategy to interfere with Ca2+ mobilization, leading to breast cancer cells' malignant phenotype repression and reduction of their resistance to treatments.

4.
Cancers (Basel) ; 14(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008277

ABSTRACT

Breast cancer is a heterogeneous disease from the histological and molecular expression point of view, and this heterogeneity determines cancer aggressiveness. Store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ entry in non-excitable cells, is significantly remodeled in cancer cells and plays an important role in the development and support of different cancer hallmarks. The store-operated CRAC (Ca2+ release-activated Ca2+) channels are predominantly comprised of Orai1 but the participation of Orai2 and Orai3 subunits has been reported to modulate the magnitude of Ca2+ responses. Here we provide evidence for a heterogeneous expression of Orai2 among different breast cancer cell lines. In the HER2 and triple negative breast cancer cell lines SKBR3 and BT20, respectively, where the expression of Orai2 was greater, Orai2 modulates the magnitude of SOCE and sustain Ca2+ oscillations in response to carbachol. Interestingly, in these cells Orai2 modulates the activation of NFAT1 and NFAT4 in response to high and low agonist concentrations. Finally, we have found that, in cells with high Orai2 expression, Orai2 knockdown leads to cell cycle arrest at the G0-G1 phase and decreases apoptosis resistance upon cisplatin treatment. Altogether, these findings indicate that, in breast cancer cells with a high Orai2 expression, Orai2 plays a relevant functional role in agonist-evoked Ca2+ signals, cell proliferation and apoptosis resistance.

5.
Int J Mol Sci ; 21(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076541

ABSTRACT

Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.


Subject(s)
Calcium/metabolism , Cell Proliferation , Membrane Proteins/metabolism , Progesterone/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/metabolism , Calcium Signaling , Cell Line, Tumor , Humans , ORAI1 Protein/metabolism , Stromal Interaction Molecule 2/metabolism , TRPC Cation Channels/metabolism
6.
Biochem J ; 477(17): 3183-3197, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32794568

ABSTRACT

TRPC6 forms non-selective cation channels activated by a variety of stimuli that are involved in a wide number of cellular functions. In estrogen receptor-positive (ER+) breast cancer cells, the store-operated Ca2+ entry has been reported to be dependent on STIM1, STIM2 and Orai3, with TRPC6 playing a key role in the activation of store-operated Ca2+ entry as well as in proliferation, migration and viability of breast cancer cells. We have used a combination of biotinylation, Ca2+ imaging as well as protein knockdown and overexpression of a dominant-negative TRPC6 mutant (TRPC6dn) to show that TRPC6 and STIM2 are required for the maintenance of cytosolic and endoplasmic reticulum Ca2+ content under resting conditions in ER+ breast cancer MCF7 cells. These cells exhibit a greater plasma membrane expression of TRPC6 under resting conditions than non-tumoral breast epithelial cells. Attenuation of STIM2, TRPC6 and Orai3, alone or in combination, results in impairment of resting cytosolic and endoplasmic reticulum Ca2+ homeostasis. Similar results were observed when cells were transfected with expression plasmid for TRPC6dn. TRPC6 co-immunoprecipitates with STIM2 in resting MCF7 cells, a process that is impaired by rises in cytosolic Ca2+ concentration. Impairment of TRPC6 function leads to abnormal Ca2+ homeostasis and endoplasmic reticulum stress, thus, suggesting that TRPC6 might be a potential target for the development of anti-tumoral therapies.


Subject(s)
Breast Neoplasms/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Neoplasm Proteins/metabolism , Receptors, Estrogen/metabolism , Stromal Interaction Molecule 2/metabolism , TRPC6 Cation Channel/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Female , Humans , MCF-7 Cells , Neoplasm Proteins/genetics , Receptors, Estrogen/genetics , Stromal Interaction Molecule 2/genetics , TRPC6 Cation Channel/genetics
7.
Int J Mol Sci ; 21(9)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392840

ABSTRACT

Arachidonic acid (AA) is a phospholipase A2 metabolite that has been reported to mediate a plethora of cellular mechanisms involved in healthy and pathological states such as platelet aggregation, lymphocyte activation, and tissue inflammation. AA has been described to activate Ca2+ entry through the arachidonate-regulated Ca2+-selective channels (ARC channels). Here, the analysis of the changes in the intracellular Ca2+ homeostasis revealed that, despite MDA-MB-231 cells expressing the ARC channel components Orai1, Orai3, and STIM1, AA does not evoke Ca2+ entry in these cells. We observed that AA evokes Ca2+ entry in MDA-MB-231 cells transiently expressing ARC channels. Nevertheless, MDA-MB-231 cell treatment with AA reduces cell proliferation and migration while inducing cell death through apoptosis. The latter mostly likely occurs via mitochondria membrane depolarization and the activation of caspases-3, -8, and -9. Altogether, our results indicate that AA exerts anti-tumoral effects on MDA-MB-231 cells, without having any effect on non-tumoral breast epithelial cells, by a mechanism that is independent on the activation of Ca2+ influx via ARC channels.


Subject(s)
Antineoplastic Agents/pharmacology , Arachidonic Acid/pharmacology , Breast Neoplasms/metabolism , Calcium/metabolism , Breast Neoplasms/drug therapy , Calcium Channels/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
8.
Cancers (Basel) ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973006

ABSTRACT

(1) Background: The structure of the Sigma 2 receptor/TMEM97 (σ2RTMEM97) has recently been reported. (2, 3) Methods and results: We used genetic and biochemical approaches to identify the molecular mechanism downstream of σ2R/TMEM97. The novel σ2R/TMEM97 fluorescent ligand, NO1, reduced the proliferation and survival of the triple negative breast cancer cell lines (TNBC: MDA-MB-231 and MDA-MB-468 cell lines), due to NO1-induced apoptosis. Greater bioaccumulation and faster uptake of NO1 in MDA-MB-231 cells compared to MCF10A or MCF7 cell lines were also shown. Accordingly, elevated σ2R/TMEM97 expression was confirmed by Western blotting. In contrast to NO1, other σ2R/TMEM97 ligands, such as SM21 and PB28, enhanced MDA-MB-231 cell proliferation and migration. Store-operated calcium entry (SOCE) is crucial for different cancer hallmarks. Here, we show that NO1, but not other σ2R/TMEM97 ligands, reduced SOCE in MDA-MB-231 cells. Similarly, TMEM97 silencing in MDA-MB-231 cells also impaired SOCE. NO1 administration downregulated STIM1-Orai1 interaction, probably by impairing the positive regulatory effect of σ2R/TMEM97 on STIM1, as we were unable to detect interaction with Orai1. (4) Conclusion: σ2R/TMEM97 is a key protein for the survival of triple negative breast cancer cells by promoting SOCE; therefore, NO1 may become a good pharmacological tool to avoid their proliferation.

9.
Adv Exp Med Biol ; 1131: 445-469, 2020.
Article in English | MEDLINE | ID: mdl-31646520

ABSTRACT

Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.


Subject(s)
Calcium Channels , Calcium , Ion Transport , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling , Ion Transport/genetics , Stromal Interaction Molecule 1/metabolism
10.
J Cell Sci ; 132(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30975919

ABSTRACT

Stromal interaction molecule 1 (STIM1) is one of the key elements for the activation of store-operated Ca2+ entry (SOCE). Hence, identification of the relevant phosphorylatable STIM1 residues with a possible role in the regulation of STIM1 function and SOCE is of interest. By performing a computational analysis, we identified that the Y316 residue is susceptible to phosphorylation. Expression of the STIM1-Y316F mutant in HEK293, NG115-401L and MEG-01 cells resulted in a reduction in STIM1 tyrosine phosphorylation, SOCE and the Ca2+ release-activated Ca2+ current (ICRAC). STIM1-Orai1 colocalization was reduced in HEK293 cells transfected with YFP-STIM1-Y316F compared to in cells with wild-type (WT) YFP-tagged STIM1. Additionally, the Y316F mutation altered the pattern of interaction between STIM1 and SARAF under resting conditions and upon Ca2+ store depletion. Expression of the STIM1 Y316F mutant enhanced slow Ca2+-dependent inactivation (SCDI) as compared to STIM1 WT, an effect that was abolished by SARAF knockdown. Finally, in NG115-401L cells transfected with shRNA targeting SARAF, expression of STIM1 Y316F induced greater SOCE than STIM1 WT. Taken together, our results provide evidence supporting the idea that phosphorylation of STIM1 at Y316 plays a relevant functional role in the activation and modulation of SOCE.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Intracellular Calcium-Sensing Proteins/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Calcium/metabolism , Calcium Signaling , HEK293 Cells , Humans , ORAI1 Protein/metabolism , Phosphorylation , Tyrosine/metabolism
11.
Curr Med Chem ; 26(22): 4119-4144, 2019.
Article in English | MEDLINE | ID: mdl-29210636

ABSTRACT

A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.


Subject(s)
Adipokines/blood , Diabetes Mellitus, Type 2/blood , Biomarkers/blood , Diabetes Mellitus, Type 2/metabolism , Humans
12.
Front Physiol ; 9: 266, 2018.
Article in English | MEDLINE | ID: mdl-29628897

ABSTRACT

Stanniocalcin 2 (STC2) is a fish protein that controls body Ca2+ and phosphate metabolism. STC2 has also been described in mammals, and as platelet function highly depends on both extracellular and intracellular Ca2+, we have explored its expression and function in these cells. STC2-/- mice exhibit shorter tail bleeding time than WT mice. Platelets from STC2-deficient mice showed enhanced aggregation, as well as enhanced Ca2+ mobilization in response to the physiological agonist thrombin (Thr) and the diacylglycerol analog, OAG, a selective activator of the non-capacitative Ca2+ entry channels. Interestingly, platelets from STC2-/- mice exhibit attenuated interaction between STIM1 and Orai1 in response to Thr, thus suggesting that STC2 is required for Thr-evoked STIM1-Orai1 interaction and the subsequent store-operated Ca2+ entry (SOCE). We have further assessed possible changes in the expression of the most relevant channels involved in non-capacitative Ca2+ entry in platelets. Then, protein expression of Orai3, TRPC3 and TRPC6 were evaluated by Western blotting, and the results revealed that while the expression of Orai3 was enhanced in the STC2-deficient mice, others like TRPC3 and TRPC6 remains almost unaltered. Summarizing, our results provide for the first time evidence for a role of STC2 in platelet physiology through the regulation of agonist-induced Ca2+ entry, which might be mediated by the regulation of Orai3 channel expression.

13.
Front Physiol ; 8: 392, 2017.
Article in English | MEDLINE | ID: mdl-28649203

ABSTRACT

According to the International Association for the Study of Pain (IASP) pain is characterized as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage". The TRP super-family, compressing up to 28 isoforms in mammals, mediates a myriad of physiological and pathophysiological processes, pain among them. TRP channel might be constituted by similar or different TRP subunits, which will result in the formation of homomeric or heteromeric channels with distinct properties and functions. In this review we will discuss about the function of TRPs in pain, focusing on TRP channles that participate in the transduction of noxious sensation, especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a large number of physical and chemical stimuli.

SELECTION OF CITATIONS
SEARCH DETAIL
...