Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793861

ABSTRACT

Autonomous mobile robots are essential to the industry, and human-robot interactions are becoming more common nowadays. These interactions require that the robots navigate scenarios with static and dynamic obstacles in a safely manner, avoiding collisions. This paper presents a physical implementation of a method for dynamic obstacle avoidance using a long short-term memory (LSTM) neural network that obtains information from the mobile robot's LiDAR for it to be capable of navigating through scenarios with static and dynamic obstacles while avoiding collisions and reaching its goal. The model is implemented using a TurtleBot3 mobile robot within an OptiTrack motion capture (MoCap) system for obtaining its position at any given time. The user operates the robot through these scenarios, recording its LiDAR readings, target point, position inside the MoCap system, and its linear and angular velocities, all of which serve as the input for the LSTM network. The model is trained on data from multiple user-operated trajectories across five different scenarios, outputting the linear and angular velocities for the mobile robot. Physical experiments prove that the model is successful in allowing the mobile robot to reach the target point in each scenario while avoiding the dynamic obstacle, with a validation accuracy of 98.02%.

2.
Sensors (Basel) ; 23(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960401

ABSTRACT

The Internet of Things (IoT), projected to exceed 30 billion active device connections globally by 2025, presents an expansive attack surface. The frequent collection and dissemination of confidential data on these devices exposes them to significant security risks, including user information theft and denial-of-service attacks. This paper introduces a smart, network-based Intrusion Detection System (IDS) designed to protect IoT networks from distributed denial-of-service attacks. Our methodology involves generating synthetic images from flow-level traffic data of the Bot-IoT and the LATAM-DDoS-IoT datasets and conducting experiments within both supervised and self-supervised learning paradigms. Self-supervised learning is identified in the state of the art as a promising solution to replace the need for massive amounts of manually labeled data, as well as providing robust generalization. Our results showcase that self-supervised learning surpassed supervised learning in terms of classification performance for certain tests. Specifically, it exceeded the F1 score of supervised learning for attack detection by 4.83% and by 14.61% in accuracy for the multiclass task of protocol classification. Drawing from extensive ablation studies presented in our research, we recommend an optimal training framework for upcoming contrastive learning experiments that emphasize visual representations in the cybersecurity realm. This training approach has enabled us to highlight the broader applicability of self-supervised learning, which, in some instances, outperformed supervised learning transferability by over 5% in precision and nearly 1% in F1 score.

3.
Sensors (Basel) ; 22(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080840

ABSTRACT

Data reliability is of paramount importance for decision-making processes in the industry, and for this, having quality links for wireless sensor networks plays a vital role. Process and machine monitoring can be carried out through ANDON towers with wireless transmission and machine learning algorithms that predict link quality (LQE) to save time, hence reducing expenses by early failure detection and problem prevention. Indeed, alarm signals used in conjunction with LQE classification models represent a novel paradigm for ANDON towers, allowing low-cost remote sensing within industrial environments. In this research, we propose a deep learning model, suitable for implementation in small workshops with limited computational resources. As part of our work, we collected a novel dataset from a realistic experimental scenario with actual industrial machinery, similar to that commonly found in industrial applications. Then, we carried out extensive data analyses using a variety of machine learning models, each with a methodical search process to adjust hyper-parameters, achieving results from common features such as payload, distance, power, and bit error rate not previously reported in the state of the art. We achieved an accuracy of 99.3% on the test dataset with very little use of computational resources.


Subject(s)
Deep Learning , Wireless Technology , Algorithms , Machine Learning , Reproducibility of Results
4.
Sensors (Basel) ; 22(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35591056

ABSTRACT

From smart homes to industrial environments, the IoT is an ally to easing daily activities, where some of them are critical. More and more devices are connected to and through the Internet, which, given the large amount of different manufacturers, may lead to a lack of security standards. Denial of service attacks (DDoS, DoS) represent the most common and critical attack against and from these networks, and in the third quarter of 2021, there was an increase of 31% (compared to the same period of 2020) in the total number of advanced DDoS targeted attacks. This work uses the Bot-IoT dataset, addressing its class imbalance problem, to build a novel Intrusion Detection System based on Machine Learning and Deep Learning models. In order to evaluate how the records timestamps affect the predictions, we used three different feature sets for binary and multiclass classifications; this helped us avoid feature dependencies, as produced by the Argus flow data generator, whilst achieving an average accuracy >99%. Then, we conducted comprehensive experimentation, including time performance evaluation, matching and exceeding the results of the current state-of-the-art for identifying denial of service attacks, where the Decision Tree and Multi-layer Perceptron models were the best performing methods to identify DDoS and DoS attacks over IoT networks.


Subject(s)
Deep Learning , Internet of Things , Internet , Machine Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...