Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1542(1-3): 73-81, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11853881

ABSTRACT

The cAMP-dependent protein kinase (PKA) from Candida albicans is a tetramer composed of two catalytic subunits (C) and two type II regulatory subunits (R). To evaluate the role of a putative autophosphorylation site of the R subunit (Ser(180)) in the interaction with C, this site was mutated to an Ala residue. Recombinant wild-type and mutant forms of the R subunit were expressed in Escherichia coli and purified. The wild-type recombinant R subunit was fully phosphorylated by the purified C subunit, while the mutant form was not, confirming that Ser(180) is the target for the autophosphorylation reaction. Association and dissociation experiments conducted with both recombinant R subunits and purified C subunit showed that intramolecular phosphorylation of the R subunit led to a decreased affinity for C. This diminished affinity was reflected by an 8-fold increase in the concentration of R subunit needed to reach half-maximal inhibition of the kinase activity and in a 5-fold decrease in the cAMP concentration necessary to obtain half-maximal dissociation of the reconstituted holoenzyme. Dissociation of the mutant holoenzyme by cAMP was not affected by the presence of MgATP. Metabolic labeling of yeast cells with [(32)P]orthophosphate indicated that the R subunit exists as a serine phosphorylated protein. The possible involvement of R subunit autophosphorylation in modulating C. albicans PKA activity in vivo is discussed.


Subject(s)
Candida albicans/enzymology , Cyclic AMP-Dependent Protein Kinases/chemistry , Fungal Proteins/chemistry , Binding Sites , Catalysis , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit , Cyclic AMP-Dependent Protein Kinase Type II , Cyclic AMP-Dependent Protein Kinases/biosynthesis , Cyclic AMP-Dependent Protein Kinases/genetics , Dimerization , Mutagenesis, Site-Directed , Mutation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...