Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Eur Respir J ; 63(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38097207

ABSTRACT

BACKGROUND: Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. METHODS: Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. RESULTS: Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. CONCLUSIONS: SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Neutrophils , Proteome , Cytokines
2.
Nat Immunol ; 24(5): 731, 2023 05.
Article in English | MEDLINE | ID: mdl-37024535

Subject(s)
Proteome , Proteomics
3.
Am J Respir Crit Care Med ; 207(8): 998-1011, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36724365

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration-derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD.


Subject(s)
NF-E2-Related Factor 2 , Pulmonary Disease, Chronic Obstructive , Humans , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Malate Dehydrogenase/metabolism
4.
EMBO Rep ; 23(11): e55399, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36194675

ABSTRACT

Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction
5.
Eur J Immunol ; 52(11): 1776-1788, 2022 11.
Article in English | MEDLINE | ID: mdl-36086884

ABSTRACT

Bach2 codes for a transcriptional regulator exerting major influences on T cell-mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8+ T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8+ T cells had a higher abundance of memory and reduced abundance of naïve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from naïve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer.


Subject(s)
CD8-Positive T-Lymphocytes , Cytotoxicity, Immunologic , Mice , Animals , Gene Deletion , Proteomics , T-Lymphocytes, Cytotoxic , Perforin , Granzymes/genetics , Basic-Leucine Zipper Transcription Factors/genetics
6.
iScience ; 25(2): 103827, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198887

ABSTRACT

To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity. Notably, Nrf2 activation promoted mitochondrial fusion. The Keap1 inhibitor, 4-octyl itaconate remodeled the inflammatory macrophage proteome, increasing redox and suppressing type I interferon (IFN) response. Similarly, pharmacologic or genetic Nrf2 activation inhibited the transcription of IFN-ß and its downstream effector IFIT2 during LPS stimulation. These data suggest that Nrf2 activation facilitates metabolic reprogramming and mitochondrial adaptation, and finetunes the innate immune response in macrophages.

7.
Cell Mol Immunol ; 19(3): 303-315, 2022 03.
Article in English | MEDLINE | ID: mdl-34983947

ABSTRACT

T cell activation, proliferation, and differentiation into effector and memory states involve massive remodeling of T cell size and molecular content and create a massive increase in demand for energy and amino acids. Protein synthesis is an energy- and resource-demanding process; as such, changes in T cell energy production are intrinsically linked to proteome remodeling. In this review, we discuss how protein synthesis and degradation change over the course of a T cell immune response and the crosstalk between these processes and T cell energy metabolism. We highlight how the use of high-resolution mass spectrometry to analyze T cell proteomes can improve our understanding of how these processes are regulated.


Subject(s)
Lymphocyte Activation , T-Lymphocytes , Cell Differentiation , Energy Metabolism , Proteome
8.
Science ; 374(6565): eabe9977, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648346

ABSTRACT

T cell receptor activation of naïve CD8+ T lymphocytes initiates their maturation into effector cytotoxic T lymphocytes (CTLs), which can kill cancer and virally infected cells. Although CTLs show an increased reliance on glycolysis upon acquisition of effector function, we found an essential requirement for mitochondria in target cell­killing. Acute mitochondrial depletion in USP30 (ubiquitin carboxyl-terminal hydrolase 30)­deficient CTLs markedly diminished killing capacity, although motility, signaling, and secretion were all intact. Unexpectedly, the mitochondrial requirement was linked to mitochondrial translation, inhibition of which impaired CTL killing. Impaired mitochondrial translation triggered attenuated cytosolic translation, precluded replenishment of secreted killing effectors, and reduced the capacity of CTLs to carry out sustained killing. Thus, mitochondria emerge as a previously unappreciated homeostatic regulator of protein translation required for serial CTL killing.


Subject(s)
Cytotoxicity, Immunologic/immunology , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , Thiolester Hydrolases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Movement/genetics , Cells, Cultured , Cytotoxicity, Immunologic/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Biosynthesis , T-Lymphocytes, Cytotoxic/enzymology , Thiolester Hydrolases/genetics
9.
Front Immunol ; 12: 712402, 2021.
Article in English | MEDLINE | ID: mdl-34603285

ABSTRACT

Metabolic and nutrient-sensing pathways play an important role in controlling the efficacy of effector T cells. Oxygen is a critical regulator of cellular metabolism. However, during immune responses T cells must function in oxygen-deficient, or hypoxic, environments. Here, we used high resolution mass spectrometry to investigate how the proteome of primary murine CD8+ cytotoxic T lymphocytes (CTLs) is reconfigured in response to hypoxia in vitro. We identified and quantified over 7,600 proteins and discovered that hypoxia increased the abundance of a selected number of proteins in CTLs. This included glucose transporters, metabolic enzymes, transcription factors, cytolytic effector molecules, checkpoint receptors and adhesion molecules. While some of these proteins may augment the effector functions of CTLs, others may limit their cytotoxicity. Moreover, we determined that hypoxia could inhibit IL-2-induced proliferation cues and antigen-induced pro-inflammatory cytokine production in CTLs. These data provide a comprehensive resource for understanding the magnitude of the CTL response to hypoxia and emphasise the importance of oxygen-sensing pathways for controlling CD8+ T cells. Additionally, this study provides new understanding about how hypoxia may promote the effector function of CTLs, while contributing to their dysfunction in some contexts.


Subject(s)
Cell Hypoxia , Proteome , T-Lymphocytes, Cytotoxic/metabolism , Animals , Cell Cycle Checkpoints , Cell Hypoxia/genetics , Cells, Cultured , Chromatography, Liquid/methods , Female , Gene Expression Regulation , Gene Ontology , Genes, T-Cell Receptor alpha , Interleukin-2/pharmacology , Lactates/metabolism , Mass Spectrometry/methods , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Transgenic , Molecular Sequence Annotation , Protein Biosynthesis , T-Lymphocytes, Cytotoxic/drug effects
10.
Front Immunol ; 12: 691997, 2021.
Article in English | MEDLINE | ID: mdl-34220851

ABSTRACT

Phosphoinositide 3-kinase p110 delta (PI3K p110δ) is pivotal for CD8+ T cell immune responses. The current study explores PI3K p110δ induction and repression of antigen receptor and cytokine regulated programs to inform how PI3K p110δ directs CD8+ T cell fate. The studies force a revision of the concept that PI3K p110δ controls metabolic pathways in T cells and reveal major differences in PI3K p110δ regulated transcriptional programs between naïve and effector cytotoxic T cells (CTL). These differences include differential control of the expression of cytolytic effector molecules and costimulatory receptors. Key insights from the work include that PI3K p110δ signalling pathways repress expression of the critical inhibitory receptors CTLA4 and SLAMF6 in CTL. Moreover, in both naïve and effector T cells the dominant role for PI3K p110δ is to restrain the production of the chemokines that orchestrate communication between adaptive and innate immune cells. The study provides a comprehensive resource for understanding how PI3K p110δ uses multiple processes mediated by Protein Kinase B/AKT, FOXO1 dependent and independent mechanisms and mitogen-activated protein kinases (MAPK) to direct CD8+ T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/immunology , Animals , Cell Differentiation , Female , Mice, Transgenic , Proteomics
11.
Wellcome Open Res ; 6: 38, 2021.
Article in English | MEDLINE | ID: mdl-33997298

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.

12.
J Clin Invest ; 131(10)2021 05 17.
Article in English | MEDLINE | ID: mdl-33822765

ABSTRACT

Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues.


Subject(s)
Carbon/metabolism , Lysosomes/metabolism , Neutrophils/metabolism , Protein Biosynthesis , Proteome/metabolism , Animals , Cell Hypoxia , Humans , Mice
13.
Biochem J ; 478(1): 79-98, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33305809

ABSTRACT

The integration of multiple signalling pathways that co-ordinate T cell metabolism and transcriptional reprogramming is required to drive T cell differentiation and proliferation. One key T cell signalling module is mediated by extracellular signal-regulated kinases (ERKs) which are activated in response to antigen receptor engagement. The activity of ERKs is often used to report antigen receptor occupancy but the full details of how ERKs control T cell activation is not understood. Accordingly, we have used mass spectrometry to explore how ERK signalling pathways control antigen receptor driven proteome restructuring in CD8+ T cells to gain insights about the biological processes controlled by ERKs in primary lymphocytes. Quantitative analysis of >8000 proteins identified 900 ERK regulated proteins in activated CD8+ T cells. The data identify both positive and negative regulatory roles for ERKs during T cell activation and reveal that ERK signalling primarily controls the repertoire of transcription factors, cytokines and cytokine receptors expressed by activated T cells. It was striking that a large proportion of the proteome restructuring that is driven by triggering of the T cell antigen receptor is not dependent on ERK activation. However, the selective targets of the ERK signalling module include the critical effector molecules and the cytokines that allow T cell communication with other immune cells to mediate adaptive immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Lymphopoiesis/genetics , MAP Kinase Signaling System/genetics , Proteome/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Benzamides/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Chromatography, Liquid , Cytokines/metabolism , DNA Replication/drug effects , DNA Replication/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , Gene Ontology , Lymphopoiesis/drug effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Male , Mice , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Proteome/drug effects , Proteomics , Tandem Mass Spectrometry , Transcription Factors/metabolism
14.
Immunity ; 53(3): 481-484, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937149

ABSTRACT

Personalized medicines require understanding the molecular causes of disease. In this issue of Immunity, Gruber et al. reveal that a gain-of-function JAK1 genetic variant results in a mutant protein with mosaic expression that drives multi-organ immune dysregulation via kinase dependent and independent mechanisms. The work highlights how biochemistry can inform therapies to resolve complex immune disorders.


Subject(s)
Mosaicism , Janus Kinase 1/genetics
15.
Immunometabolism ; 2(4): e200029, 2020.
Article in English | MEDLINE | ID: mdl-32879737

ABSTRACT

Assays to monitor the metabolic state or nutrient uptake capacity of immune cells at a single cell level are increasingly in demand. One assay, used by many immunologists, employs 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG), a fluorescent analogue of 2-deoxyglucose (2DG), as a substrate for glucose transporters. This molecule has been validated as a substrate for the glucose transporter Glut2 (Slc2a2) in mammalian cells but 2-NDBG selectivity for the glucose transporters expressed by T cells, Glut1 (Slc2a1) and Glut3 (Slc2a3), has never been explored. Nor has the possibility that 2-NBDG might bind to T cells that do not express glucose transporters been assessed. In this technical commentary we interrogate the specificity of 2-NBBG labelling as a readout for glucose transport in T lymphocytes. We compare flow cytometric 2-NBDG staining against well validated radiolabelled glucose transport assays in murine T cells. Our data show there can be a large discordance between glucose transport capacity and 2-NBDG labelling in T cells. We also find that 2-NBDG uptake into murine T cells is not inhibited by competitive substrates or facilitative glucose transporter inhibitors, nor can 2-NBDG competitively block glucose uptake in T cells. Collectively, these data argue that 2-NBDG uptake alone is not a reliable tool for the assessment of cellular glucose transport capacity.

17.
Elife ; 92020 02 05.
Article in English | MEDLINE | ID: mdl-32022686

ABSTRACT

T cell expansion and differentiation are critically dependent on the transcription factor c-Myc (Myc). Herein we use quantitative mass-spectrometry to reveal how Myc controls antigen receptor driven cell growth and proteome restructuring in murine T cells. Analysis of copy numbers per cell of >7000 proteins provides new understanding of the selective role of Myc in controlling the protein machinery that govern T cell fate. The data identify both Myc dependent and independent metabolic processes in immune activated T cells. We uncover that a primary function of Myc is to control expression of multiple amino acid transporters and that loss of a single Myc-controlled amino acid transporter effectively phenocopies the impact of Myc deletion. This study provides a comprehensive map of how Myc selectively shapes T cell phenotypes, revealing that Myc induction of amino acid transport is pivotal for subsequent bioenergetic and biosynthetic programs and licences T cell receptor driven proteome reprogramming.


T cells are white blood cells that form an important part of our immune defence, acting to attack disease-causing microbes and cancer and directing other immune cells to help in this fight. T cells spend most of their time in a resting state, small and inactive, but when an infection strikes, they transform into large, active 'effector' cells. This change involves a dramatic increase in protein production, accompanied by high energy demands. To fully activate, T cells need to boost their metabolism and take in extra amino acids, the building blocks of proteins. For this, they depend upon a protein called Myc. The Myc protein works as a genetic switch, controlling several kinds of cell metabolism, but the molecular details of its effects in T cells remain unclear. Most studies looking to understand Myc have focussed on its role in cancer cells. Here its main job is thought to be driving the use of sugar to make energy. However, it has also been shown to control the levels of transporters that carry amino acids into cells and thus provide the raw materials for protein production. It is possible that Myc plays a similar role in T cells as it does in cancer cells, but this might not be the case because cancer cells have strange biology and do not always accurately represent healthy cells. To find out what role Myc plays in T cell activation, Marchingo et al. compared T cells with and without Myc. The cells lacking Myc were much smaller than their normal counterparts and counts of their proteins revealed why. Without Myc, protein production had stalled. In normal T cells, the number of amino acid transporters increased up to 100 times as cells transformed from a resting to an active state. But, without Myc, this did not happen. The loss of Myc cut off the supply of amino acids, halting protein production. For T cells, the most important amino acid transporter is a protein called System-L transporter Slc7a5. It supplies several essential amino acids, including methionine ­ the amino acid that starts every single protein. To confirm the role of amino acid transporters in T cell activation, Marchingo et al. deleted the gene for the System-L transporter Slc7a5 directly. This had the same effect as deleting the gene for Myc itself, demonstrating that a key role of Myc in T cell activation is to increase the number of amino acid transporters. Understanding the role of Myc in T cell activation is an important step towards controlling the immune system. At the moment, many research groups are investigating how best to use T cells to fight diseases like cancer. Further analysis of the link between Myc and amino acid transporters could in the future aid the design of such immunotherapies.


Subject(s)
Lymphocyte Activation/physiology , Proteome , Proto-Oncogene Proteins c-myc/physiology , T-Lymphocytes/immunology , Amino Acid Transport Systems/metabolism , Animals , Mass Spectrometry/methods , Metabolic Networks and Pathways , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism
18.
Nat Immunol ; 20(11): 1542-1554, 2019 11.
Article in English | MEDLINE | ID: mdl-31591570

ABSTRACT

Quantitative mass spectrometry reveals how CD4+ and CD8+ T cells restructure proteomes in response to antigen and mammalian target of rapamycin complex 1 (mTORC1). Analysis of copy numbers per cell of >9,000 proteins provides new understanding of T cell phenotypes, exposing the metabolic and protein synthesis machinery and environmental sensors that shape T cell fate. We reveal that lymphocyte environment sensing is controlled by immune activation, and that CD4+ and CD8+ T cells differ in their intrinsic nutrient transport and biosynthetic capacity. Our data also reveal shared and divergent outcomes of mTORC1 inhibition in naïve versus effector T cells: mTORC1 inhibition impaired cell cycle progression in activated naïve cells, but not effector cells, whereas metabolism was consistently impacted in both populations. This study provides a comprehensive map of naïve and effector T cell proteomes, and a resource for exploring and understanding T cell phenotypes and cell context effects of mTORC1.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Proteome/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Checkpoints/immunology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Female , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Male , Mass Spectrometry , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Transgenic , Proteome/immunology , Proteomics , Sirolimus/pharmacology
19.
Cell Rep ; 27(3): 690-698.e4, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995468

ABSTRACT

AMPK acts downstream of the tumor suppressor LKB1, yet its role in cancer has been controversial. AMPK is activated by biguanides, such as metformin and phenformin, and metformin use in diabetics has been associated with reduced cancer risk. However, whether this is mediated by cell-autonomous AMPK activation within tumor progenitor cells has been unclear. We report that T-cell-specific loss of AMPK-α1 caused accelerated growth of T cell acute lymphoblastic leukemia/lymphoma (T-ALL) induced by PTEN loss in thymic T cell progenitors. Oral administration of phenformin, but not metformin, delayed onset and growth of lymphomas, but only when T cells expressed AMPK-α1. This differential effect of biguanides correlated with detection of phenformin, but not metformin, in thymus. Phenformin also enhanced apoptosis in T-ALL cells both in vivo and in vitro. Thus, AMPK-α1 can be a cell-autonomous tumor suppressor in the context of T-ALL, and phenformin may have potential for the prevention of some cancers.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Proliferation/drug effects , Hypoglycemic Agents/pharmacology , Phenformin/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/deficiency , AMP-Activated Protein Kinases/genetics , Administration, Oral , Animals , Disease Models, Animal , Disease-Free Survival , Female , Glycolysis/drug effects , Hypoglycemic Agents/therapeutic use , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phenformin/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...