Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 142: 184-91, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26077798

ABSTRACT

In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils.


Subject(s)
Calcium Carbonate/analysis , Charcoal/chemistry , Soil/chemistry , Chemical Phenomena , Hydrogen-Ion Concentration , Soil Microbiology
2.
Chemosphere ; 103: 313-21, 2014 May.
Article in English | MEDLINE | ID: mdl-24397887

ABSTRACT

Biochar produced during pyrolysis has the potential to enhance soil fertility and reduce greenhouse gas emissions. The influence of biochar properties (e.g., particle size) on both short- and long-term carbon (C) mineralization of biochar remains unclear. There is minimal information on the potential effects of biochar particle sizes on their breakdowns by soil microorganism, so it is unknown if the particle size of biochar influences C mineralization rate and/or stability in soils. In order to evaluate the effect of different sources (BS) and particle sizes (BF) of biochar on C loss and/or stability in soils, an incubation study on C mineralization of different biochar sources and particle sizes was established using two soils (ST): Norfolk soil (fine loamy, kaolinitic, thermic, typic Kandiudults) and Coxville soil (fine loamy kaolinitic, thermic, Paleaquults). In separate incubation vessels, these soils were amended with one of two manure-based biochars (poultry litters, PL; swine solids, SS) or one of two lignocellulosic-based biochars (switchgrass, SG; pine chips, PC) which were processed into two particle sizes (dust, <0.42 mm; pellet, >2 mm). The amount of CO2 evolved varied significantly between soils (p≤0.0001); particle sizes (p≤0.0001) and the interactions of biochar source (p≤0.001) and forms of biochars (p≤0.0001) with soil types. Averaged across soils and sources of biochar, CO2-C evolved from dust-sized biochar (281 mg kg(-1)) was significantly higher than pellet-sized biochar (226 mg kg(-1)). Coxville soils with SS biochar produced the greatest average CO2-C of 428 mg kg(-1) and Norfolk soils with PC had the lowest CO2-C production (93 mg kg(-1)). Measured rates of carbon mineralization also varied with soils and sources of biochar (Norfolk: PL>SS>SG≥PC; Coxville: PC>SG>SS>PL). The average net CO2-C evolved from the Coxville soils (385 mg kg(-1)) was about threefold more than the CO2-C evolved from the Norfolk soils (123 mg kg(-1)). Our results suggest different particle sizes and sources of biochar as well as soil type influence biochar stability.


Subject(s)
Carbon/chemistry , Charcoal , Manure , Minerals/chemistry , Soil/chemistry , Animals , Hot Temperature , Particle Size , Poultry , Swine
3.
Bioresour Technol ; 101(6): 2014-25, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19939667

ABSTRACT

Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy feedstocks in the US and throughout the world should carefully consider water resource limitations and their critical connections to ecosystem integrity and sustainability of human food.


Subject(s)
Animal Feed , Biomass , Biotechnology/methods , Water/chemistry , Animals , Brazil , Climate Change , Conservation of Natural Resources , Ecosystem , Energy-Generating Resources , Ethanol/chemistry , Greenhouse Effect , Saccharum , United States , Zea mays
4.
J Environ Qual ; 38(4): 1749-56, 2009.
Article in English | MEDLINE | ID: mdl-19549952

ABSTRACT

Waste handling systems for confined swine production in the upper South (approximately 32-37 degrees N and 79-93 degrees W) depend mainly on anaerobic lagoons and application of the waste effluent to cropland. The main objective of this study was to evaluate the quality of 'Coastal' bermudagrass [Cynodon dactylon (L.) Pers.] hay receiving effluent generated from a raw swine waste treatment system designed to reduce P and K concentrations and delivered by subsurface drip irrigation (SDI) compared with hay produced from commercial N fertilizer. Eight treatments, consisting of commercial N fertilizer or effluent, each irrigated at two irrigation rates (75 and 100% of estimated evapotranspiration) and two lateral spacings (0.6 and 1.2 m), were compared with a control treatment of commercial N fertilizer without irrigation. Three harvests were taken in each of 2 yr and five of the six evaluated using wether sheep (30-45 kg). Greatest dry matter intake (DMI) per unit body weight occurred for the control vs. all irrigated treatments (1.94 vs. 1.77 kg 100(-1) kg; P = 0.02; SEM = 0.11). Among irrigated treatments, DMI was greatest from commercial N vs. effluent (1.81 vs. 1.71 kg 100(-1) kg; P = 0.05; SEM = 0.11). Dry matter intake was similar for the 75% rate treatments and the non-irrigated treatment (mean, 1.87 kg 100(-1) kg) but was reduced for the 100% rate (1.94 vs. 1.72 kg 100(-1) kg; P = 0.03; SEM = 0.11). Hay from the 75% rate was more digestible than hay from the 100% rate (527 vs. 508 g kg(-1); P = 0.03; SEM = 21). The SDI system functioned well, and lateral spacing did not alter hay quality. Treated waste from a raw waste treatment system was readily delivered by SDI at the recommended rate to produce bermudagrass hay of adequate quality for ruminant production systems.


Subject(s)
Poaceae , Animals , Swine
5.
Bioresour Technol ; 100(22): 5466-71, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19442517

ABSTRACT

Slow pyrolysis or carbonization promotes the conversion of animal manures such as swine manure into charcoal. In this paper, the carbonizing kinetics of swine solids taken from different treatment stages were investigated with a thermogravimetric analyzer. Compared to their biologically stabilized counterpart (lagoon sludge) with an activation energy of 160 kJ mol(-1), the activation energies for fresh swine solid samples such as homogenized flushed manure and dewatered solids were much lower between 92 and 95 kJ mol(-1). Compared to the kinetics of first order decomposition of cellulose, the pyrolytic decomposition of the swine manures were more complex with the reaction orders varying at 3.7 and 5.0. The two different mathematical methods employed in this paper yielded the similar values of activation energy (E) and pre-exponential factor (A), confirming the validity of these methods. The results of this study provide useful information for development of farm-scale swine solid carbonization process.


Subject(s)
Animals, Domestic , Carbon/chemistry , Refuse Disposal , Sus scrofa , Animals , Computer Simulation , Kinetics , Manure/analysis , Sewage/chemistry , Thermodynamics , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL