Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 148(1): 24-34, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9465260

ABSTRACT

Vertebrate embryos are particularly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Identification of tissues that are susceptible to the adverse effects of TCDD is requisite for understanding the embryo toxic effects of TCDD. The objective of the present study was to quantitate the temporal appearance of and dose dependence of apoptosis in TCDD-exposed medaka embryos (Oryzias latipes). A fluorescent-based DNA end-labeling assay provided a sensitive method for detection of TCDD-induced apoptosis in tissue sections of medaka embryos. Apoptotic cells were readily apparent in the medial yolk vein at all observed embryonic stages in TCDD-exposed embryos. Slope-comparison analysis indicated that TCDD-induced programmed cell death in the embryonic medial yolk vein was mechanistically linked to embryo mortality. These data are consistent with the hypothesis that vascular damage contributes to the acute embryo toxic effects of TCDD. However, as sublethal concentrations of dioxin-like compounds are more typical of environmental exposures, tissue damage was also assessed in medaka fry that were exposed to low doses of TCDD during embryonic development. Cell death was detected in gill and digestive tissues in visibly healthy medaka fry that had been exposed to low doses of TCDD during embryonic development. Increased expression of cytochrome P450 1A is a major biochemical consequence of TCDD exposure and is often used as a biomarker for exposure to dioxin-like compounds. Therefore, we compared the tissue distribution of TCDD-induced P450 1A expression and TCDD-induced programmed cell death. TCDD-induced programmed cell death co-localized with TCDD-induced P450 1A expression in both embryos and in visibly healthy post-hatch fry. Our results suggest that aberrant programmed cell death may be a suitable marker for exposure of feral organisms to dioxin-like compounds.


Subject(s)
Apoptosis/drug effects , Cytochrome P-450 Enzyme System/biosynthesis , Embryo, Nonmammalian/drug effects , Polychlorinated Dibenzodioxins/toxicity , Yolk Sac/drug effects , Animals , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/enzymology , Female , Image Processing, Computer-Assisted , Male , Oryzias , Yolk Sac/blood supply , Yolk Sac/pathology
2.
Toxicol Appl Pharmacol ; 141(1): 23-34, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8917672

ABSTRACT

Vertebrate embryos are extremely sensitive to environmental contaminants known as planar halogenated hydrocarbons (PHHs). The physiological targets that mediate PHH-induced embryotoxicity are not known. We have characterized embryotoxicity in medaka (Orizias latipes) caused by 2,3,7,8-tetrachlorodibezo-p-dioxin (TCDD), the prototypic PHH. DNA degradation in cells of the embryonic vasculature and loss of functional integrity of the medial yolk vein were demonstrated in TCDD-exposed embryos. Pharmacological intervention with piperonyl butoxide inhibited TCDD-induced DNA degradation, restored the functional integrity of the medial yolk vein, and protected against the embryotoxicity of TCDD. Treatment of TCDD-exposed embryos with the antioxidant N-acetylcysteine also provided significant protection against the embryotoxicity of TCDD. These results demonstrate that DNA damage and consequent cell death in the embryonic vasculature are key physiological mediators of TCDD-induced embryotoxicity.


Subject(s)
DNA Damage/drug effects , Embryo, Nonmammalian/drug effects , Polychlorinated Dibenzodioxins/toxicity , Animals , Cell Death/drug effects , Electrophoresis , Heart/drug effects , Heart/embryology , Nervous System/drug effects , Nervous System/embryology , Oryzias
SELECTION OF CITATIONS
SEARCH DETAIL
...