Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 10(6): 1040-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25924599

ABSTRACT

Multitarget therapeutic leads for Alzheimer's disease were designed on the models of compounds capable of maintaining or restoring cell protein homeostasis and of inhibiting ß-amyloid (Aß) oligomerization. Thirty-seven thioxanthen-9-one, xanthen-9-one, naphto- and anthraquinone derivatives were tested for the direct inhibition of Aß(1-40) aggregation and for the inhibition of electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBChE). These compounds are characterized by basic side chains, mainly quinolizidinylalkyl moieties, linked to various bi- and tri-cyclic (hetero)aromatic systems. With very few exceptions, these compounds displayed inhibitory activity on both AChE and BChE and on the spontaneous aggregation of ß-amyloid. In most cases, IC50 values were in the low micromolar and sub-micromolar range, but some compounds even reached nanomolar potency. The time course of amyloid aggregation in the presence of the most active derivative (IC50 =0.84 µM) revealed that these compounds might act as destabilizers of mature fibrils rather than mere inhibitors of fibrillization. Many compounds inhibited one or both cholinesterases and Aß aggregation with similar potency, a fundamental requisite for the possible development of therapeutics exhibiting a multitarget mechanism of action. The described compounds thus represent interesting leads for the development of multitarget AD therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Cholinesterase Inhibitors/therapeutic use , Quinolizidines/chemistry , Amyloid beta-Peptides/chemistry , Blood-Brain Barrier , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Circular Dichroism , Humans , Kinetics , Microscopy, Electron, Transmission , Structure-Activity Relationship
2.
Neurotox Res ; 19(4): 556-74, 2011 May.
Article in English | MEDLINE | ID: mdl-20405353

ABSTRACT

Quinacrine is one of the few molecules tested to treat patients affected by prion diseases, although the clinical outcome is largely unsatisfactory. To identify novel derivatives with higher neuroprotective activity, we evaluated the effects of a small library of acridine derivatives. The 6-chloro-2-methoxyacridine derivatives bearing on position 9 a quinolizidin-1-ylamino (Q1, Q2) or a quinolizidin-1-ylalkylamino residue (Q3, Q4, Q6, Q7), the thio-bioisoster of Q3 (Q5), the 9-(N-lupinylthiopropyl)amino derivative (Q8) and simple acridines (Q9 and Q10) were considered. We compared the effects of quinacrine and these novel analogues in the inhibition of the cytotoxic activity and protease K (PK) resistance of the human prion protein fragment 90-231 (hPrP90-231). We demonstrate that quinacrine caused a significant reduction of hPrP90-231 toxicity due to its binding to the fragment and the prevention of its conversion in a toxic isoform. All acridine derivatives analyzed showed high affinity binding for hPrP90-231, but only Q3 and Q10, caused a significant reduction of hPrP90-231 cytotoxicity, with higher efficacy than quinacrine. We attempted to correlate the cytoprotective effects of the new compounds with some biochemical parameters (binding affinity to hPrP90-231, intrinsic fluorescence quenching, hydrophobic amino acid exposure), but a direct relationship occurred only with the reduction of PK resistance, likely due to the prevention of the acquisition of the ß-sheet-rich toxic conformation. These data represent interesting leads for further modifications of the basic side chain and the substituent pattern of the acridine nucleus to develop novel compounds with improved antiprion activity to be tested in in vivo experimental setting.


Subject(s)
Acridines/pharmacology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/toxicity , Prions/antagonists & inhibitors , Prions/toxicity , Quinacrine/pharmacology , Acridines/chemistry , Animals , Animals, Newborn , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Cells, Cultured , Cerebellum/drug effects , Cerebellum/pathology , Humans , Quinacrine/analogs & derivatives , Rats , Rats, Sprague-Dawley , Treatment Outcome
3.
Bioorg Med Chem ; 16(18): 8447-65, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18760610

ABSTRACT

Eighty-five arylazoenamines, characterized by different types of aryl and basic moieties, have been synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of ten RNA and DNA viruses. The most commonly affected viruses were, in decreasing order, CVB-2, RSV, BVDV, YFV, and Sb-1; the remaining viruses were either not affected (HIV-1, VSV, and VV) or susceptible only to a very few compounds (Reo-1 and HSV-1). Thirty-five compounds exhibited high activity, with EC(50) in the range 0.8-10 microM, and other 28 compounds had EC(50) between 11 and 30 microM, thus indicating that the arylazoenamine molecular pattern is an interesting novel pharmacophore for antiviral agents against ssRNA viruses. Moreover, some compounds (as 28, 32, 42, and 53) appear of high interest, being devoid of toxicity on the human MT-4 cells (CC(50)>100 microM). A ligand-based computational approach was employed to identify highly predictive pharmacophore models for the most frequently affected viruses CVB-2, RSV, and BVDV. These models should allow the design of second generation of more potent inhibitors of these human and veterinary pathogens.


Subject(s)
Amines/pharmacology , Antiviral Agents/pharmacology , Azo Compounds/pharmacology , DNA Viruses/drug effects , RNA Viruses/drug effects , Virus Replication/drug effects , Amines/chemical synthesis , Animals , Antiviral Agents/chemical synthesis , Azo Compounds/chemical synthesis , Cells, Cultured , Humans , Structure-Activity Relationship , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...