Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 17(2): e202301149, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37737522

ABSTRACT

The utilization of water as a sustainable reaction medium has important advantages over traditional organic solvents. Hydroxypropyl methylcellulose has emerged as a biomass-based polymeric additive that enables organic reactions in water through hydrophobic effects. However, such conditions imply slurries as reaction mixtures, where the efficacy of mass transfer and mixing decreases with increasing vessel size. In order to circumvent this limitation and establish an effectively scalable platform for performing hydroxypropyl methylcellulose-mediated aqueous transformations, we utilized oscillatory plug flow reactors that feature a smart dimensioning design principle across different scales. Using nucleophilic aromatic substitutions as valuable model reactions, rapid parameter optimization was performed first in a small-scale instrument having an internal channel volume of 5 mL. The optimal conditions were then directly transferred to a 15 mL reactor, achieving a three-fold scale-up without re-optimizing any reaction parameters. By precisely fine-tuning the oscillation parameters, the system achieved optimal homogeneous suspension of solids, preventing settling of particles and clogging of process channels. Ultimately, this resulted in a robust and scalable platform for performing multiphasic reactions under aqueous conditions.

2.
J Hazard Mater ; 458: 131950, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37421863

ABSTRACT

The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.


Subject(s)
Microplastics , Soil , Plastics , Polyvinyl Chloride , Charcoal , Magnetic Phenomena , Polyethylenes
3.
ACS Omega ; 6(38): 24316-24324, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604615

ABSTRACT

Mn-based perovskites obtained by two different industrial procedures [flame spray pyrolysis (FSP) and co-precipitation (COP)] have been extensively compared in terms of chemical, structural, and morphological properties with the aim of evaluating how the upscale of complex catalysts can affect the functionality. The transition between laboratory and production scale is, in fact, usually not straightforward. The catalytic activity was tested focusing on reactions of relevance in the abatement of pollutants. In particular, CO-assisted NO reduction (which could be also considered as a model reaction) and reactions with a synthetic automotive exhaust mixture, including 10% steam and oxygen, were carried out. The development of three-way catalysts is still a relevant question: noble metal-free, efficient catalysts are even more necessary in hybrid vehicles. For this purpose, the catalytic activity of the samples has been correlated with the characterization results and thus with the peculiar aspects of the production method. Relevant differences have been observed between COP and FSP catalysts, in terms of the specific surface area, surface composition, and presence of surface-active sites. Also, the different efficiencies of inserting dopants in the perovskite unit cell and thus in reducibility and ion mobility are relevant. Despite having the same composition and crystalline structure, the catalytic activity and the effect of pre-treatments are observed to depend on the production procedure.

4.
ACS Omega ; 6(38): 24325-24337, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604616

ABSTRACT

La0.6Ca0.2Fe0.8Cu0.2O3, undoped (LF) and Ca, Cu-doped (LCFC), powders, obtained by different industrial procedures, are compared to evaluate reproducibility and scale-up in different industrial synthetic approaches: flame spray pyrolysis (FSP) and coprecipitation (COP). Also the effects of varying composition (doping) and FSP process variability are considered as comparative studies on morphological, crystallographic, redox and compositional properties, and functional activity. A model reaction (CO + NO) and reactions with an automotive exhaust mixture were carried out. Unexpected results on the effectiveness of doping for catalytic activity emerged. Samples with the same compositions proved to be significantly affected by the synthesis, with variability within the same process. The activity of LCFC COP is comparable to the FSP analogue, at stoichiometric conditions, notwithstanding differences highlighted by characterization. In an oxygen-deficient mixture, LCFC-COP yields higher NO reduction and CO oxidation activity than LCFC-FSP. The absence of Ca in the lattice was unexpectedly beneficial. The doping effectiveness must be carefully checked for large-scale production.

5.
Phys Rev Lett ; 108(23): 238002, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003991

ABSTRACT

In this Letter, the two-dimensional dense flow of polygonal particles on an incline with a flat frictional inferior boundary is analyzed by means of contact dynamics discrete element simulations, in order to develop boundary conditions for continuum models of dense granular flows. We show the evidence that the global slip phenomenon deviates significantly from simple sliding: a finite slip velocity is generally found for shear forces lower than the sliding threshold for particle-wall contacts. We determined simple scaling laws for the dependence of the slip velocity on shear rate, normal and shear stresses, and material parameters. The importance of a correct determination of the slip at the base of the incline, which is crucial for the calculation of flow rates, is discussed in relation to natural flows.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 1): 051304, 2011 May.
Article in English | MEDLINE | ID: mdl-21728522

ABSTRACT

A hydrodynamic model for dense granular flows, previously developed for confined flows, has been extended to address free surface flow down an inclined chute. Results show that the model can predict the existence of two critical inclination angles, namely, the avalanche starting angle θ(start) above which the granular bed begins flowing from an initially jammed configuration, and an avalanche stopping angle θ(stop), which is the minimum to maintain flowing conditions, in agreement with experiments and numerical simulations available from the literature. The dependence of these critical angles on the bed depth is also analytically formulated, reflecting the expected qualitative behavior. Such a hysteretic behavior is specific of granular flow and its prediction provides indications of consistence of the modeling approach. The improved model also captures the scaling of the velocity profiles down the bed depth.

7.
Int J Pharm ; 416(1): 229-41, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21763764

ABSTRACT

The purpose of this research was to determine the effects of some important drug properties (such as particle size distribution, hygroscopicity and solubility) and process variables on the granule growth behaviour and final drug distribution in high shear wet granulation. Results have been analyzed in the light of widely accepted theories and some recently developed approaches. A mixture composed of drug, some excipients and a dry binder was processed using a lab-scale high-shear mixer. Three common active pharmaceutical ingredients (paracetamol, caffeine and acetylsalicylic acid) were used within the initial formulation. Drug load was 50% (on weight basis). Influences of drug particle properties (e.g. particle size and shape, hygroscopicity) on the granule growth behaviour were evaluated. Particle size distribution (PSD) and granule morphology were monitored during the entire process through sieve analysis and scanning electron microscope (SEM) image analysis. Resistance of the wet mass to mixing was furthermore measured using the impeller torque monitoring technique. The observed differences in the granule growth behaviour as well as the discrepancies between the actual and the ideal drug content in the final granules have been interpreted in terms of dimensionless quantity (spray flux number, bed penetration time) and related to torque measurements. Analysis highlighted the role of liquid distribution on the process. It was demonstrated that where the liquid penetration time was higher (e.g. paracetamol-based formulations), the liquid distribution was poorer leading to retarded granule growth and selective agglomeration. On the other hand where penetration time was lower (e.g. acetylsalicylic acid-based formulations), the growth was much faster but uniformity content problem arose because of the onset of crushing and layering phenomena.


Subject(s)
Acetaminophen/chemistry , Aspirin/chemistry , Caffeine/chemistry , Chemistry, Pharmaceutical/methods , Powders/chemistry , Excipients/chemistry , Particle Size , Solubility , Surface Properties , Torque , Wettability
8.
Int J Pharm ; 387(1-2): 48-55, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19969055

ABSTRACT

An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system.


Subject(s)
Excipients/chemistry , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Humidity , Particle Size , Torque , Transition Temperature , Wettability
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 1): 031304, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19391932

ABSTRACT

We derive an effective boundary condition for dense granular flow taking into account the effect of the heterogeneity of the force network on sliding friction dynamics. This yields an intermediate boundary condition which lies in the limit between no slip and Coulomb friction; two simple functions relating wall stress, velocity, and velocity variance are found from numerical simulations. Moreover, we show that this effective boundary condition corresponds to Navier slip condition when the model of G. D. R. Midi [Eur. Phys. J. E 14, 341 (2004)] is assumed to be valid, and that the slip length depends on the length scale that characterizes the system, viz. the particle diameter.

10.
Ann Ist Super Sanita ; 43(2): 130-8, 2007.
Article in English | MEDLINE | ID: mdl-17634661

ABSTRACT

Fluid-dynamic conditions that are compatible with tensile stress on the bonds between platelet glycoprotein Ibalpha and immobilized Von Willebrand factor A1 domain (VWF-A1) led to Ca++ release from intracellular stores (type alpha/beta peaks), which preceded stationary platelet adhesion. Raised levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate inhibited these [Ca++]i oscillations and prevented stable adhesion. Once adhesion was established through the integrin alphaIIbbeta3, new [Ca++]i oscillations (type gamma) of greater amplitude and duration, and involving a transmembrane ion flux, developed in association with the recruitment of additional platelets into aggregates. We have defined the distinct roles that the two ADP receptors, P2Y1 and P2Y12, play in the early events that follow the initial platelet interaction with immobilized VWF-A1 under high flow conditions. We have examined the consequences of specific pharmacologic inhibition of P2 receptors and our findings demonstrate a differential role of P2Y1 and P2Y12, respectively, in platelet adhesion and aggregation onto immobilized VWF under elevated shear stress, and highlight the distinct contribution of signaling pathways dependent on Src family kinases, PLC, and phosphoinositide 3-kinase (PI 3-K) to these processes. Results have been achieved through original experiments under flow, thoroughly characterized by ad hoc image analysis techniques and quantitative kinetic analysis.


Subject(s)
Blood Flow Velocity/physiology , Hemostasis/physiology , Cell Adhesion , Humans , Image Processing, Computer-Assisted , Kinetics , Platelet Membrane Glycoprotein IIb/blood , Thermodynamics , von Willebrand Factor/genetics , von Willebrand Factor/physiology
11.
Ann Biomed Eng ; 34(5): 833-46, 2006 May.
Article in English | MEDLINE | ID: mdl-16708268

ABSTRACT

A versatile and automated image processing technique and data extraction procedure from videomicroscopic data is presented. The motivation is a detailed quantification of blood platelet adhesion from laminar flow onto a surface. The characteristics of the system under observation (type of cells, their speed of movement, and the quality of the optical image to analyze) provided the criteria for developing a new procedure enabling tracking for long image sequences. Specific features of the novel method include: automatic segmentation methodology which removes operator bias; platelet recognition across the series of images based on a probability density function (two-dimensional, Gaussian-like) tailored to the physics of platelet motion on the surface; options to automatically tune the procedure parameters to explore different applications; integrated analysis of the results (platelet trajectories) to obtain relevant information, such as deposition and removal rates, displacement distributions, pause times and rolling velocities. Synthetic images, providing known reference conditions, are used to test the method. The algorithm operation is illustrated by application to images obtained by fluorescence microscopy of the interaction between platelets and von Willebrand factor-coated surfaces in parallel-plate flow chambers. Potentials and limits are discussed, together with evaluation of errors resulting from an inaccurate tracking.


Subject(s)
Algorithms , Blood Platelets/cytology , Blood Platelets/physiology , Flow Cytometry/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Microscopy, Video/methods , Platelet Adhesiveness/physiology , Animals , Blood Flow Velocity/physiology , Cell Culture Techniques/methods , Cell Movement/physiology , Cells, Cultured , Humans
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 1): 041304, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12443196

ABSTRACT

Some peculiar features of granular materials (smooth, identical spheres) in rapid flow are the normal pressure differences and the related anisotropy of the velocity distribution function f((1)). Kinetic theories have been proposed that account for the anisotropy, mostly based on a generalization of the Chapman-Enskog expansion [N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 (1998)]. In the present paper, we approach the problem differently by means of the method of moments; previously, similar theories have been constructed for the nearly elastic behavior of granular matter but were not able to predict the normal pressures differences. To overcome these restrictions, we use as an approximation of the f((1)) a truncated series expansion in Hermite polynomials around the Maxwellian distribution function. We used the approximated f((1)) to evaluate the collisional source term and calculated all the resulting integrals; also, the difference in the mean velocity of the two colliding particles has been taken into account. To simulate the granular flows, all the second-order moment balances are considered together with the mass and momentum balances. In balance equations of the Nth-order moments, the (N+1)th-order moments (and their derivatives) appear: we therefore introduced closure equations to express them as functions of lower-order moments by a generalization of the "elementary kinetic theory," instead of the classical procedure of neglecting the (N+1)th-order moments and their derivatives. We applied the model to the translational flow on an inclined chute obtaining the profiles of the solid volumetric fraction, the mean velocity, and all the second-order moments. The theoretical results have been compared with experimental data [E. Azanza, F. Chevoir, and P. Moucheront, J. Fluid Mech. 400, 199 (1999); T. G. Drake, J. Fluid Mech. 225, 121 (1991)] and all the features of the flow are reflected by the model: the decreasing exponential profile of the solid volumetric fraction, the parabolic shape of the mean velocity, the constancy of the granular temperature and of its components. Besides, the model predicts the normal pressures differences, typical of the granular materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...