Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
2.
Ann Surg Oncol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869763

ABSTRACT

BACKGROUND: The highly metastatic nature of pancreatic ductal adenocarcinoma (PDAC) and the difficulty to achieve favorable patient outcomes emphasize the need for novel therapeutic solutions. For preclinical evaluations, genetically engineered mouse models are often used to mimic human PDAC but frequently fail to replicate synchronous development and metastatic spread. This study aimed to develop a transplantation model to achieve synchronous and homogenous PDAC growth with controlled metastatic patterns in the liver. METHODS: To generate an orthotopic PDAC model, the DT6606 cell line was injected into the pancreas head of C57BL/6 mice, and their survival was monitored over time. To generate a heterotopic transplantation model, growing doses of three PDAC cell lines (DT6606, DT6606lm, and K8484) were injected into the portal vein of mice. Magnetic resonance imaging (MRI) was used to monitor metastatic progression, and histologic analysis was performed. RESULTS: Orthotopically injected mice succumbed to the tumor within an 11-week period (average survival time, 78.2 ± 4.45 days). Post-mortem examinations failed to identify liver metastasis. In the intraportal model, 2 × 105 DT6606 cells resulted in an absence of liver metastases by day 21, whereas 5 × 104 DT6606lm cells and 7 × 104 K8484 cells resulted in steady metastatic growth. Higher doses caused significant metastatic liver involvement. The use of K8484 cells ensured the growth of tumors closely resembling the histopathologic characteristics of human PDAC. CONCLUSIONS: This report details the authors' efforts to establish an "optimal" murine model for inducing metastatic PDAC, which is critical for advancing our understanding of the disease and developing more effective treatments.

4.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684863

ABSTRACT

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Subject(s)
Aspartate-Ammonia Ligase , Disease Models, Animal , Polycystic Kidney Diseases , Animals , Humans , Mice , Aspartate-Ammonia Ligase/metabolism , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/antagonists & inhibitors , Disease Progression , Kidney/pathology , Kidney/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/genetics
5.
FEBS Open Bio ; 14(2): 258-275, 2024 02.
Article in English | MEDLINE | ID: mdl-37986139

ABSTRACT

Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp-deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild-type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω-3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω-3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild-type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp-deficient animals.


Subject(s)
Fatty Acids, Omega-3 , Fatty Liver , Mice , Animals , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Magnetic Resonance Imaging , Triglycerides , Iron/metabolism , Fatty Acids
6.
Cancer Cell ; 41(11): 1892-1910.e10, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37863068

ABSTRACT

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.


Subject(s)
CD8-Positive T-Lymphocytes , Liver Neoplasms , Humans , Mice , Animals , CTLA-4 Antigen/metabolism , Tumor Microenvironment/genetics , Macrophages , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/pathology
7.
Comput Methods Programs Biomed ; 230: 107363, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36720181

ABSTRACT

BACKGROUND AND OBJECTIVES: Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome. METHODOLOGY: The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation. RESULTS: Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues. CONCLUSIONS: Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.


Subject(s)
Hyperthermia, Induced , Nanotubes , Urinary Bladder Neoplasms , Mice , Animals , Photothermal Therapy , Gold , Urinary Bladder Neoplasms/therapy , Hyperthermia, Induced/methods , Cell Line, Tumor
8.
Sci Transl Med ; 14(653): eabl4106, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35857642

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor characterized by a strongly immunosuppressive tumor microenvironment (TME) that represents a barrier also for the development of effective immunotherapies. The possibility to revert this hostile TME by immunoactivating cytokines is hampered by the severe toxicity associated with their systemic administration. Here, we exploited a lentiviral vector-based platform to engineer hematopoietic stem cells ex vivo with the aim of releasing, via their tumor-infiltrating monocyte/macrophage progeny, interferon-α (IFN-α) or interleukin-12 (IL-12) at the tumor site with spatial and temporal selectivity. Taking advantage of a syngeneic GBM mouse model, we showed that inducible release of IFN-α within the TME achieved robust tumor inhibition up to eradication and outperformed systemic treatment with the recombinant protein in terms of efficacy, tolerability, and specificity. Single-cell RNA sequencing of the tumor immune infiltrate revealed reprogramming of the immune microenvironment toward a proinflammatory and antitumoral state associated with loss of a macrophage subpopulation shown to be associated with poor prognosis in human GBM. The spatial and temporal control of IL-12 release was critical to overcome an otherwise lethal hematopoietic toxicity while allowing to fully exploit its antitumor activity. Overall, our findings demonstrate a potential therapeutic approach for GBM and set the bases for a recently launched first-in-human clinical trial in patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Cytokines , Disease Models, Animal , Glioblastoma/drug therapy , Interferon-alpha , Interleukin-12/therapeutic use , Mice , Tumor Microenvironment
9.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925229

ABSTRACT

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Subject(s)
Muscle, Skeletal/metabolism , Obesity/metabolism , Animals , Chromatography, Liquid/methods , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Diet, High-Fat/methods , Disease Models, Animal , Female , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Obesity/physiopathology , Oxidative Stress , Proteomics/methods , Sarcopenia/metabolism , Sex Factors , Tandem Mass Spectrometry/methods
10.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916885

ABSTRACT

Pulmonary infections caused by Mycobacterium abscessus (MA) have increased over recent decades, affecting individuals with underlying pathologies such as chronic obstructive pulmonary disease, bronchiectasis and, especially, cystic fibrosis. The lack of a representative and standardized model of chronic infection in mice has limited steps forward in the field of MA pulmonary infection. To overcome this challenge, we refined the method of agar beads to establish MA chronic infection in immunocompetent mice. We evaluated bacterial count, lung pathology and markers of inflammation and we performed longitudinal studies with magnetic resonance imaging (MRI) up to three months after MA infection. In this model, MA was able to establish a persistent lung infection for up to two months and with minimal systemic spread. Lung histopathological analysis revealed granulomatous inflammation around bronchi characterized by the presence of lymphocytes, aggregates of vacuolated histiocytes and a few neutrophils, mimicking the damage observed in humans. Furthermore, MA lung lesions were successfully monitored for the first time by MRI. The availability of this murine model and the introduction of the successfully longitudinal monitoring of the murine lung lesions with MRI pave the way for further investigations on the impact of MA pathogenesis and the efficacy of novel treatments.


Subject(s)
Disease Models, Animal , Lung/pathology , Mycobacterium Infections, Nontuberculous/pathology , Mycobacterium abscessus , Pneumonia, Bacterial/pathology , Animals , Chronic Disease , Lung/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Mycobacterium Infections, Nontuberculous/diagnostic imaging , Pneumonia, Bacterial/diagnostic imaging
11.
Magn Reson Imaging ; 68: 127-135, 2020 05.
Article in English | MEDLINE | ID: mdl-32004712

ABSTRACT

Preclinical cardiac MR is challenging and time-consuming. A fast and comprehensive acquisition protocol and standardized image post-processing may improve preclinical research, reducing acquisition time, costs and variability of results. In the present study, we evaluated the feasibility of a contrast-enhanced 3D IntraGate steady-state cine sequence (ce-3D-IG-cine) with short acquisition time (11 min) for a single-shot combined characterization of left ventricle (LV) remodeling and infarct size (IS) in a mouse model of acute ischemia-reperfusion injury. Sixteen male C57BL/6N mice underwent 7T cardiac MR (Bruker, BioSpec 70/30) including optimized ce-3D-IG-cine (total scan time 11 min) at day 1, 5 and 28 after surgery. LV end-diastolic volume (EDVMR) and ejection fraction (EFMR) extracted from MR were compared to ones from short-axis (SA-EDVecho, SA-EFecho) and parasternal long-axis (LA-EDVecho, LA-EFecho) echocardiography. IS was manually and semiautomatically segmented from ce-3D-IG-cine using different standard deviation (SD +2, +3, +4, +5, +6 in respect to a reference tissue). Mice were sacrificed at day 28, immediately after imaging. IS at day 28 was compared to injury burden at histology. MR and echocardiographic morpho-functional parameters were compared, as IS from MR and histology. Bland-Altman plots were used to assess the agreement in ischemic burden segmentation. Volumetric and functional parameters measured on ce-3D-IG-cine correlated to the correspondent echocardiographic parameter (EDVMR vs SA-EDVecho: ρ = 0.813; EDVMR vs LA-EDVecho: ρ = 0.845; EFMR vs SA-EFecho ρ = 0.612; EFMR vs LA-EFecho ρ = 0.791; p < 0.001 in all cases). Manually segmented IS strongly correlated with the scar at histology (ρ = 0.904, p < 0.001). A threshold of +3SD showed the highest performance for semiautomatic assessment of IS compared to manual segmentation (ρ = 0.965, p < 0.001), with an overall reproducibility of 73%, and a peak reproducibility of 80% at day 1. The ce-3D-IG-cine sequence, manually or semiautomatically segmented using 3SD threshold, allows fast and comprehensive LV morpho-functional and structural characterization in myocardial ischemia-reperfusion injury model.


Subject(s)
Echocardiography , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine , Reperfusion Injury/diagnostic imaging , Animals , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results
12.
Growth Horm IGF Res ; 46-47: 50-54, 2019.
Article in English | MEDLINE | ID: mdl-31276905

ABSTRACT

OBJECTIVE: The impact of growth hormone (GH) deficiency of the adult on cardiovascular function remains only partially elucidated. Purpose of this study was to test cardiac function in adult GH deficient patients using cardiac magnetic resonance (CMR). DESIGN: Cardiac magnetic resonance (CMR) techniques, including cardiac 31P MR spectroscopy and evaluation of gadolinium late-enhancement, were applied to assess simultaneously, in a cross-sectional fashion, morphological, functional, metabolic, and structural parameters of the left (LV) and right ventricle (RV) in 15 patients with adult onset GH deficiency. Fifteen healthy individuals served as controls. RESULTS: In GH deficient patients LV systolic function (EF%: 61 ±â€¯1.7 vs 62.1 ±â€¯0.8; p = .44) was not different in spite of a lower LV mass (83.2 ±â€¯5.3 vs 145.3 ±â€¯11.9 g; p = .001), a subclinical impairment of diastolic function (E/A peak ratio: 1.6 ±â€¯0.2 vs 2.1 ±â€¯0.2 p = .05), and a trend for lower PCr/ATP ratio (2.1 ±â€¯0.8 vs 2.3 ±â€¯0.1 p = .07). The RV showed reduced chamber size (end diastolic volume 123.8 ±â€¯9 vs 147.9 ±â€¯7.6 mL; p = .021) with preserved mass. No structural alterations of the LV and RV at late-enhancement were detected in these patients. CONCLUSIONS: GH deficient patients represent a unique model of reduced LV myocardial mass in which major structural and metabolic alterations are lacking. Mal-adaptive mechanisms developing in the long term in response to GH deficiency and more severely affecting the LV remain to be elucidated.


Subject(s)
Body Composition , Growth Disorders/diagnosis , Heart/physiopathology , Human Growth Hormone/deficiency , Ventricular Dysfunction, Left/physiopathology , Absorptiometry, Photon , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Growth Disorders/diagnostic imaging , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Ventricular Dysfunction, Left/diagnostic imaging , Young Adult
13.
Stem Cells Transl Med ; 8(10): 1107-1122, 2019 10.
Article in English | MEDLINE | ID: mdl-31140762

ABSTRACT

Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.


Subject(s)
Epithelial Cells/metabolism , Thymus Gland/metabolism , Animals , Cell Differentiation , Cell Lineage , Epithelial Cells/cytology , Mice , Mice, Nude , Regeneration
14.
Sci Adv ; 5(4): eaav1472, 2019 04.
Article in English | MEDLINE | ID: mdl-31001581

ABSTRACT

Obesity and its associated metabolic abnormalities have become a global emergency with considerable morbidity and mortality. Epidemiologic and animal model data suggest an epigenetic contribution to obesity. Nevertheless, the cellular and molecular mechanisms through which epigenetics contributes to the development of obesity remain to be elucidated. Suv420h1 and Suv420h2 are histone methyltransferases responsible for chromatin compaction and gene repression. Through in vivo, ex vivo, and in vitro studies, we found that Suv420h1 and Suv420h2 respond to environmental stimuli and regulate metabolism by down-regulating peroxisome proliferator-activated receptor gamma (PPAR-γ), a master transcriptional regulator of lipid storage and glucose metabolism. Accordingly, mice lacking Suv420h proteins activate PPAR-γ target genes in brown adipose tissue to increase mitochondria respiration, improve glucose tolerance, and reduce adipose tissue to fight obesity. We conclude that Suv420h proteins are key epigenetic regulators of PPAR-γ and the pathways controlling metabolism and weight balance in response to environmental stimuli.


Subject(s)
Energy Metabolism , Histone-Lysine N-Methyltransferase/metabolism , PPAR gamma/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Animals , Chromatin/metabolism , Cold Temperature , Diet, High-Fat , Gene Expression Regulation , Glucose Tolerance Test , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Obesity/pathology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
15.
Acta Diabetol ; 56(9): 1013-1022, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30989379

ABSTRACT

AIM: More than 40% of pancreatic ductal adenocarcinoma (PDAC) patients have glucose intolerance or diabetes. The association has led to two hypotheses: PDAC causes diabetes or diabetes shares risk factors for the development of PDAC. In order to elucidate the relationship between diabetes and PDAC, we investigated the glucose metabolism during tumorigenesis in the LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre (KPC) mouse, a genetically engineered model of PDAC. METHODS: Male and female KPCs have been fed with standard diet (SD) or high-fat diet (HFD). The imaging-based 4-class tumor staging was used to follow pancreatic cancer development. Not fasting glycemia, 4-h fasting glycemia, insulin, C-peptide, glucose tolerance after OGTT and abdominal fat volume were measured during tumorigenesis. RESULTS: PDAC development did not lead to an overt diabetic phenotype or to any alterations in glucose tolerance in KPC fed with SD. Consumption of HFD induced higher body weight/abdominal fat volume and worsened glucose homeostasis both in control CRE mice and only in early tumorigenesis stages of the KPC mice, excluding that the cancer development itself acts as a trigger for the onset of dysmetabolic features. CONCLUSION: Our data demonstrate that carcinogenesis in KPC mice is not associated with paraneoplastic diabetes.


Subject(s)
Carbohydrate Metabolism/physiology , Carcinogenesis/metabolism , Glucose/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Carbohydrate Metabolism/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Staging , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Trans-Activators/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms
16.
Carcinogenesis ; 39(9): 1197-1206, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30052815

ABSTRACT

Background: The widely used genetically engineered mouse LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre, termed KPC, spontaneously develops pancreatic cancer mirroring all phases of the carcinogenesis but in asynchronous manner. Preclinical studies need defined criteria for the enrollment of the KPC sharing the same stage of carcinogenesis. Aim: To define a tumor-staging criteria using magnetic resonance (MR) and ultrasound (US) and then to correlate the imaging stage with overall survival of KPC mice. Methods: Forty KPC (2- to 5-month-old mice) were imaged by axial fat-saturated T2-weighted sequences at MR and by brightness mode US to establish criteria for tumor staging. Immunohistopathology was used to validate imaging. A second cohort of 25 KPC was used to correlate imaging stage with survival by Kaplan-Meier analysis. Results: We defined a four-class tumor staging system ranking from stages 1 to 4. Stage 1 was described as radiologically healthy pancreas; precursor lesions were detectable in histology only. Cystic papillary neoplasms, besides other premalignant alterations, marked stage 2 in the absence of cancer nodules. Stages 3 and 4 identified mice affected by overt pancreatic cancer with size <5 or ≥5 mm, respectively. Regarding the prognosis, this staging system correlated with disease-related mortality whatever may be the KPC age when they staged. Conclusion: This imaging-based four-class tumor staging is an effective and safe method to stage pancreatic cancer development in KPC. As a result, regardless of their age, KPC mice can be synchronized based on prognosis or on a specific phase of tumorigenesis, such as the early but already radiologically detectable one (stage 2).


Subject(s)
Magnetic Resonance Imaging/methods , Pancreatic Neoplasms , Ultrasonography/methods , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Staging/methods , Pancreas/physiology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Precancerous Conditions/pathology
17.
Acta Biomater ; 73: 458-469, 2018 06.
Article in English | MEDLINE | ID: mdl-29689381

ABSTRACT

The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE: The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging.


Subject(s)
Durapatite/chemistry , Ferric Compounds/chemistry , Magnetics , Magnetite Nanoparticles/chemistry , Animals , Contrast Media , Dextrans/chemistry , Iron/chemistry , Leukocytes, Mononuclear/cytology , Liver/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Nanotechnology , Phagocytes/cytology , Spleen/diagnostic imaging , Thermogravimetry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , X-Ray Diffraction
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1172-1182, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29408646

ABSTRACT

Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.


Subject(s)
Genetic Therapy/methods , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , Neuromuscular Junction/metabolism , Protein Engineering , Transcription Factors , Up-Regulation , Animals , HeLa Cells , Humans , Mice , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Neuromuscular Junction/genetics , Neuromuscular Junction/pathology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Utrophin/genetics , Zinc Fingers
19.
Sci Rep ; 6: 29353, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27383250

ABSTRACT

Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.


Subject(s)
Adaptive Immunity , Apolipoproteins E/physiology , Atherosclerosis/prevention & control , Diet, Western , Gastrointestinal Microbiome/immunology , Inflammation/prevention & control , Animals , Apolipoproteins E/blood , Bacterial Proteins/administration & dosage , Blood Glucose/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Hormones/blood , Hormones/genetics , Insulin/blood , Intra-Abdominal Fat/metabolism , Liver/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Porins/administration & dosage
20.
Oncoimmunology ; 5(5): e1122860, 2016 May.
Article in English | MEDLINE | ID: mdl-27467932

ABSTRACT

The factors that determine whether disseminated transformed cells in vivo yield neoplastic lesions have only been partially identified. We established an ad hoc model of peritoneal carcinomatosis by injecting colon carcinoma cells in mice. Tumor cells recruit inflammatory leukocytes, mostly macrophages, and generate neoplastic peritoneal lesions. Phagocyte depletion via clodronate treatment reduces neoplastic growth. Colon carcinoma cells release a prototypic damage-associated molecular pattern (DAMP)/alarmin, High Mobility Group Box1 (HMGB1), which attracts leukocytes. Exogenous HMGB1 accelerates leukocyte recruitment, macrophage infiltration, tumor growth and vascularization. Lentiviral-based HMGB1 knockdown or pharmacological interference with its extracellular impair macrophage recruitment and tumor growth. Our findings provide a preclinical proof of principle that strategies based on preventing HMGB1-driven recruitment of leukocytes could be used for treating peritoneal carcinomatosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...