Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
J Endocr Soc ; 8(4): bvae017, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38425433

ABSTRACT

Pancreatic cancer is currently the seventh leading cause of cancer death worldwide. Understanding whether modifiable factors increase or decrease the risk of this disease is central to facilitating primary prevention. Several epidemiological studies have described the benefits of physical activity, and the risks associated with sedentary behavior, in relation to cancer. This study aimed to assess evidence of causal effects of physical activity and sedentary behavior on pancreatic cancer risk. We conducted a two-sample Mendelian randomization study using publicly available data for genetic variants associated with physical activity and sedentary behavior traits and genetic data from the Pancreatic Cancer Cohort Consortium (PanScan), the Pancreatic Cancer Case-Control Consortium (PanC4), and the FinnGen study for a total of 10 018 pancreatic cancer cases and 266 638 controls. We also investigated the role of body mass index (BMI) as a possible mediator between physical activity and sedentary traits and risk of developing pancreatic cancer. We found evidence of a causal association between genetically determined hours spent watching television (hours per day) and increased risk of pancreatic cancer for each hour increment (PanScan-PanC4 odds ratio = 1.52, 95% confidence interval 1.17-1.98, P = .002). Additionally, mediation analysis showed that genetically determined television-watching time was strongly associated with BMI, and the estimated proportion of the effect of television-watching time on pancreatic cancer risk mediated by BMI was 54%. This study reports the first Mendelian randomization-based evidence of a causal association between a measure of sedentary behavior (television-watching time) and risk of pancreatic cancer and that this is strongly mediated by BMI. Summary: Pancreatic cancer is a deadly disease that is predicted to become the second leading cause of cancer-related deaths by 2030. Physical activity and sedentary behaviors have been linked to cancer risk and survival. However, there is limited research on their correlation with pancreatic cancer. To investigate this, we used a Mendelian randomization approach to examine the genetic predisposition to physical activity and sedentariness and their relation to pancreatic cancer risk, while excluding external confounders. Our findings revealed a causal link between the time spent watching television and an increased risk of pancreatic cancer. Additionally, we determined that over half of the effect of watching television on pancreatic risk is mediated by the individual's BMI.

2.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38410445

ABSTRACT

The 313-variant polygenic risk score (PRS313) provides a promising tool for breast cancer risk prediction. However, evaluation of the PRS313 across different European populations which could influence risk estimation has not been performed. Here, we explored the distribution of PRS313 across European populations using genotype data from 94,072 females without breast cancer, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 225,105 female participants from the UK Biobank. The mean PRS313 differed markedly across European countries, being highest in south-eastern Europe and lowest in north-western Europe. Using the overall European PRS313 distribution to categorise individuals leads to overestimation and underestimation of risk in some individuals from south-eastern and north-western countries, respectively. Adjustment for principal components explained most of the observed heterogeneity in mean PRS. Country-specific PRS distributions may be used to calibrate risk categories in individuals from different countries.

3.
Environ Res ; 241: 117562, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37944693

ABSTRACT

BACKGROUND: There is a growing body of evidence on the effect of the local environment exposure on cancer susceptibility. Nonetheless, several of the associations remain controversial. Moreover, our understanding of the possible interaction between the local environment and the genetic variability is still very limited. OBJECTIVE: The aim of this study was to clarify the role of the local environment and its possible interplay with genetics on common cancers development. METHODS: Using the UK Biobank (UKBB) prospective cohort, we selected 12 local environment exposures: nitrogen oxides, nitrogen dioxides, particulate matter (10 and 2.5 µm), noise pollution, urban traffic, living distance from the coast, percentage of greenspace, natural environment, water, and domestic garden within 1000 m from the residential coordinates of each participant. All these exposures were tested for association with 17 different types of cancer for a total of 53,270 cases and 302,645 controls. Additionally, a polygenic score (PGS) was computed for each cancer, to test possible gene-environment interactions. Finally, mediation analyses were carried out. RESULTS: Thirty-six statistically significant associations considering multiple testing (p < 2.19 × 10-4) were observed. Among the novel associations we observed that individuals living farther from the coast had a higher risk of developing prostate cancer (OR = 1.13, CI95% = 1.06-1.20, P = 1.98 × 10-4). This association was partially mediated by physical activity (indirect effect (IE) = -8.48 × 10-7) and the time spent outdoor (IE = 9.07 × 10-6). All PGSs showed statistically significant associations. Finally, genome-environment interaction analysis showed that local environment and genetic variability affect cancer risk independently. DISCUSSION: Living close to the coast and air pollution were associated with a decreased risk of prostate cancer and skin melanoma, respectively. These findings from the UKBB support the role of the local environment on cancer development, which is independent from genetics and may be mediated by several lifestyle factors.


Subject(s)
Air Pollutants , Air Pollution , Prostatic Neoplasms , Male , Humans , Air Pollutants/analysis , Prospective Studies , UK Biobank , Biological Specimen Banks , Air Pollution/analysis , Particulate Matter , Environmental Exposure , Genetic Variation , Germ Cells/chemistry
4.
Dig Liver Dis ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37985251

ABSTRACT

BACKGROUND: The current knowledge on pancreatic ductal adenocarcinoma (PDAC) risk factors is limited and no study has comprehensively tested the exposome in combination with the genetic variability in relation to the disease susceptibility. AIM: The aim of this study was to analyze the exposome and its interaction with known genetic susceptibility loci, in relation to PDAC risk. METHODS: A case-control study nested in UK Biobank cohort was conducted on 816 PDAC cases and 302,645 controls. A total of 347 exposure variables, and a polygenic risk score (PRS) were analyzed through logistic regression. Gene-environment interaction analyses were conducted. RESULTS: A total of 52 associations under the Bonferroni corrected threshold of p < 1.46 × 10-4 were observed. Known risk factors such as smoking, pancreatitis, diabetes, PRS, heavy alcohol drinking and overweight were replicated in this study. As for novel associations, a clear indication for length and intensity of mobile phone use and the stress-related factors and stressful events with increase of PDAC risk was observed. Although the PRS was associated with PDAC risk (P = 2.09 × 10-9), statistically significant gene-exposome interactions were not identified. CONCLUSION: In conclusion, our results suggest that a stressful lifestyle and sedentary behaviors may play a major role in PDAC susceptibility independently from the genetic background.

5.
Int J Cancer ; 153(9): 1623-1634, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37539667

ABSTRACT

We conducted the first large genome-wide association study to identify novel genetic variants that predict better (or poorer) prognosis in colorectal cancer patients receiving standard first-line oxaliplatin-based chemotherapy vs chemotherapy without oxaliplatin. We used data from two phase III trials, NCCTG N0147 and NCCTG N9741 and a population-based patient cohort, DACHS. Multivariable Cox proportional hazards models were employed, including an interaction term between each SNP and type of treatment for overall survival (OS) and progression-free survival. The analysis was performed for studies individually, and the results were combined using fixed-effect meta-analyses separately for resected stage III colon cancer (3098 patients from NCCTG N0147 and 549 patients from DACHS) and mCRC (505 patients from NCCTG N9741 and 437 patients from DACHS). We further performed gene-based analysis as well as in silico bioinformatics analysis for CRC-relevant functional genomic annotation of identified loci. In stage III colon cancer patients, a locus on chr22 (rs11912167) was associated with significantly poorer OS after oxaliplatin-based chemotherapy vs chemotherapy without oxaliplatin (Pinteraction < 5 × 10-8 ). For mCRC patients, three loci on chr1 (rs1234556), chr12 (rs11052270) and chr15 (rs11858406) were found to be associated with differential OS (P < 5 × 10-7 ). The locus on chr1 located in the intronic region of RCSD1 was replicated in an independent cohort of 586 mCRC patients from ALGB/SWOG 80405 (Pinteraction = .04). The GWA gene-based analysis yielded for RCSD1 the most significant association with differential OS in mCRC (P = 6.6 × 10-6 ). With further investigation into its biological mechanisms, this finding could potentially be used to individualize first-line treatment and improve clinical outcomes.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Oxaliplatin/therapeutic use , Genome-Wide Association Study , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colonic Neoplasms/drug therapy , Polymorphism, Genetic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorouracil , Treatment Outcome
6.
Breast Cancer Res ; 25(1): 93, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559094

ABSTRACT

BACKGROUND: Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS: Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS: Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS: Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.


Subject(s)
Breast Neoplasms , Gene-Environment Interaction , Adult , Female , Humans , Genetic Predisposition to Disease , Breast Neoplasms/etiology , Breast Neoplasms/genetics , Bayes Theorem , Genome-Wide Association Study , Risk Factors , Polymorphism, Single Nucleotide , Case-Control Studies
7.
Front Oncol ; 13: 1172606, 2023.
Article in English | MEDLINE | ID: mdl-37346070

ABSTRACT

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is lethal due to its late diagnosis and lack of successful treatments. A possible strategy to reduce its death burden is prevention. Intraductal papillary mucinous neoplasms (IPMNs) are precursors of PDAC. It is difficult to estimate the incidence of IPMNs because they are asymptomatic. Two recent studies reported pancreatic cysts in 3% and 13% of scanned subjects. The possibility of identifying a subgroup of IPMN patients with a higher probability of progression into cancer could be instrumental in increasing the survival rate. In this study, genetic and non-genetic PDAC risk factors were tested in a group of IPMN patients under surveillance. Methods: A retrospective study was conducted on 354 IPMN patients enrolled in two Italian centres with an average follow-up of 64 months. With the use of DNA extracted from blood, collected at IPMN diagnosis, all patients were genotyped for 30 known PDAC risk loci. The polymorphisms were analysed individually and grouped in an unweighted polygenic score (PGS) in relation to IPMN progression. The ABO blood group and non-genetic PDAC risk factors were also analysed. IPMN progression was defined based on the development of worrisome features and/or high-risk stigmata during follow-up. Results: Two genetic variants (rs1517037 and rs10094872) showed suggestive associations with an increment of IPMN progression. After correction for multiple testing, using the Bonferroni correction, none of the variants showed a statistically significant association. However, associations were observed for the non-genetic variables, such as smoking status, comparing heavy smokers with light smokers (HR = 3.81, 95% 1.43-10.09, p = 0.007), and obesity (HR = 2.46, 95% CI 1.22-4.95, p = 0.012). Conclusion: In conclusion, this study is the first attempt to investigate the presence of shared genetic background between PDAC risk and IPMN progression; however, the results suggest that the 30 established PDAC susceptibility polymorphisms are not associated with clinical IPMN progression in a sample of 354 patients. However, we observed indications of cigarette smoking and body mass index (BMI) involvement in IPMN progression. The biological mechanism that could link these two risk factors to progression could be chronic inflammation, of which both smoking and obesity are strong promoters.

8.
Cancer Epidemiol Biomarkers Prev ; 32(9): 1265-1269, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37351909

ABSTRACT

BACKGROUND: There are conflicting data on whether nonalcoholic fatty liver disease (NAFLD) is associated with susceptibility to pancreatic cancer. Using Mendelian randomization (MR), we investigated the relationship between genetic predisposition to NAFLD and risk for pancreatic cancer. METHODS: Data from genome-wide association studies (GWAS) within the Pancreatic Cancer Cohort Consortium (PanScan; cases n = 5,090, controls n = 8,733) and the Pancreatic Cancer Case Control Consortium (PanC4; cases n = 4,163, controls n = 3,792) were analyzed. We used data on 68 genetic variants with four different MR methods [inverse variance weighting (IVW), MR-Egger, simple median, and penalized weighted median] separately to predict genetic heritability of NAFLD. We then assessed the relationship between each of the four MR methods and pancreatic cancer risk, using logistic regression to calculate ORs and 95% confidence intervals (CI), adjusting for PC risk factors, including obesity and diabetes. RESULTS: No association was found between genetically predicted NAFLD and pancreatic cancer risk in the PanScan or PanC4 samples [e.g., PanScan, IVW OR, 1.04; 95% confidence interval (CI), 0.88-1.22; MR-Egger OR, 0.89; 95% CI, 0.65-1.21; PanC4, IVW OR, 1.07; 95% CI, 0.90-1.27; MR-Egger OR, 0.93; 95% CI, 0.67-1.28]. None of the four MR methods indicated an association between genetically predicted NAFLD and pancreatic cancer risk in either sample. CONCLUSIONS: Genetic predisposition to NAFLD is not associated with pancreatic cancer risk. IMPACT: Given the close relationship between NAFLD and metabolic conditions, it is plausible that any association between NAFLD and pancreatic cancer might reflect host metabolic perturbations (e.g., obesity, diabetes, or metabolic syndrome) and does not necessarily reflect a causal relationship between NAFLD and pancreatic cancer.


Subject(s)
Non-alcoholic Fatty Liver Disease , Pancreatic Neoplasms , Humans , Non-alcoholic Fatty Liver Disease/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Pancreatic Neoplasms/genetics , Obesity , Polymorphism, Single Nucleotide
9.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175717

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adult , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Genome-Wide Association Study , Risk Factors , Disease Progression , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
10.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047000

ABSTRACT

Multiple myeloma (MM) is an incurable disease characterized by the presence of malignant plasma cells in the bone marrow that secrete specific monoclonal immunoglobulins into the blood. Obesity has been associated with the risk of developing solid and hematological cancers, but its role as a risk factor for MM needs to be further explored. Here, we evaluated whether 32 genome-wide association study (GWAS)-identified variants for obesity were associated with the risk of MM in 4189 German subjects from the German Multiple Myeloma Group (GMMG) cohort (2121 MM cases and 2068 controls) and 1293 Spanish subjects (206 MM cases and 1087 controls). Results were then validated through meta-analysis with data from the UKBiobank (554 MM cases and 402,714 controls) and FinnGen cohorts (914 MM cases and 248,695 controls). Finally, we evaluated the correlation of these single nucleotide polymorphisms (SNPs) with cQTL data, serum inflammatory proteins, steroid hormones, and absolute numbers of blood-derived cell populations (n = 520). The meta-analysis of the four European cohorts showed no effect of obesity-related variants on the risk of developing MM. We only found a very modest association of the POC5rs2112347G and ADCY3rs11676272G alleles with MM risk that did not remain significant after correction for multiple testing (per-allele OR = 1.08, p = 0.0083 and per-allele OR = 1.06, p = 0.046). No correlation between these SNPs and functional data was found, which confirms that obesity-related variants do not influence MM risk.


Subject(s)
Genome-Wide Association Study , Multiple Myeloma , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Multiple Myeloma/genetics , Risk Factors , Obesity/complications , Obesity/genetics , Polymorphism, Single Nucleotide , Carrier Proteins
11.
Eur J Cancer Prev ; 32(3): 301-304, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36719829

ABSTRACT

Infection by Helicobacter pylori (Hp) has been causally linked to risk of gastric cancer (GC). The coevolution of Hp and humans shaped the risk of GC as our species left Africa and migrated to the other continents. Latin America (LatAm) is a high GC incidence region where Hp evolved uniquely in the 500 years since European colonization. Differential virulence of the Hp cagA -pathogenicity island (cagPAI) by ancestral origin has been reported. We hypothesized that Hp phylogenetic origin might play a role in determining GC risk in LatAm. We used genotypes of 50 Hp genetic variants mapping to the Hp cagPAI, studied in 1220 subjects from Venezuela, Colombia, Mexico and Paraguay, who were infected with cagA-positive Hp, including 150 GC, 177 high-grade premalignant lesions (HGPMLs) and 893 low-grade premalignant lesions. We estimated the phylogenetic origin of Hp cagPAI in all study subjects by use of the STRUCTURE software and principal component analysis (PCA) and tested whether the estimated African ancestry percentage was associated with the risk of GC or HGPML. African ancestral component estimates by STRUCTURE and PCA were highly correlated. STRUCTURE-based African origin estimate was not significantly associated with the risk of HGPML, but it was inversely associated with GC risk: the OR associated with the continuous values of African component was 0.09 (95% CI, 0.01-0.85; P = 0.035). Similar trends were observed for GC with PCA-based estimates, but the association was not statistically significant. These results suggest that Hp ancestral origin may play a role in gastric carcinogenesis.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Helicobacter pylori/genetics , Phylogeny , Genomic Islands/genetics , Latin America , Precancerous Conditions/epidemiology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Helicobacter Infections/genetics
12.
Int J Cancer ; 153(2): 373-379, 2023 07 15.
Article in English | MEDLINE | ID: mdl-36451333

ABSTRACT

Genes carrying high-penetrance germline mutations may also be associated with cancer susceptibility through common low-penetrance genetic variants. To increase the knowledge on genetic pancreatic ductal adenocarcinoma (PDAC) aetiology, the common genetic variability of PDAC familial genes was analysed in our study. We conducted a multiphase study analysing 7745 single nucleotide polymorphisms (SNPs) from 29 genes reported to harbour a high-penetrance PDAC-associated mutation in at least one published study. To assess the effect of the SNPs on PDAC risk, a total of 14 666 PDAC cases and 221 897 controls across five different studies were analysed. The T allele of the rs1412832 polymorphism, that is situated in the CDKN2B-AS1/ANRIL, showed a genome-wide significant association with increased risk of developing PDAC (OR = 1.11, 95% CI = 1.07-1.15, P = 5.25 × 10-9 ). CDKN2B-AS1/ANRIL is a long noncoding RNA, situated in 9p21.3, and regulates many target genes, among which CDKN2A (p16) that frequently shows deleterious somatic and germline mutations and deregulation in PDAC. Our results strongly support the role of the genetic variability of the 9p21.3 region in PDAC aetiopathogenesis and highlight the importance of secondary analysis as a tool for discovering new risk loci in complex human diseases.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Pancreatic Ductal/genetics , Genetic Predisposition to Disease , Pancreatic Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Pancreatic Neoplasms
13.
Hum Mutat ; 20232023.
Article in English | MEDLINE | ID: mdl-38725546

ABSTRACT

A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Predisposition to Disease , Humans , Case-Control Studies , BRCA2 Protein/genetics , Female , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Likelihood Functions , Genetic Variation , Penetrance , Genetic Testing/methods
14.
Br J Sports Med ; 56(20): 1157-1170, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36328784

ABSTRACT

OBJECTIVES: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics. METHODS: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105-377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity. RESULTS: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger). CONCLUSION: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women.


Subject(s)
Breast Neoplasms , Exercise , Sedentary Behavior , Female , Humans , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors
15.
Front Oncol ; 12: 952640, 2022.
Article in English | MEDLINE | ID: mdl-36212403

ABSTRACT

Introduction: Functional single-nucleotide polymorphisms (SNPs) in genes regulating cellular uptake, elimination, and metabolism of xenobiotics may potentially influence the outcome of chronic myeloid leukemia (CML) patients treated with BCR-ABL1 tyrosine kinase inhibitors (TKI). Dasatinib, a second-generation TKI, is a substrate of the ABC-superfamily xenobiotic transporters ABCB1 (MDR1, Pg-P) and ABCG2 (BCRP). Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are involved in the control of expression of ABCB1 and ABCG2. Aim of the study: In this study, we assessed the impact of inherited variants in ABCB1, ABCG2, PXR, and CAR genes on dasatinib efficacy and toxicity in CML. Materials and methods: Sixty-one tagging SNPs in ABCB1, ABCG2, PXR, and CAR genes were analyzed by real-time quantitative PCR with specific probes in 86 CML patients who failed imatinib therapy. Results: We found the associations between SNPs rs7787082 (ABCB1, OR = 0.2; 95% CI = 0.06-0.66, p = 0.008), rs12505410 (ABCG2, OR = 3.82; 95% CI = 1.38-10.55; p = 0.010), and rs3114018 (ABCG2, OR = 0.24; 95% CI = 0.08-0.71; p = 0.010) and the probability of achieving CCyR. Furthermore, progression-free survival (PFS) was significantly influenced by SNPs rs3732357 (HR = 0.2, 95% CI = 0.26-0.70; p = 0.001), rs3732360 (HR = 0.59; 95% CI = 0.38-0.93; p = 0.020), rs11917714 (HR = 0.58; 95% CI = 0.36-0.92; p = 0.020), and rs3732359 (HR = 0.57; 95% CI = 0.36-0.91; p = 0.024) in PXR; rs2307418 (HR = 2.02; 95% CI = 1.19-3.43; p = 0.048) in CAR; and rs2235023 (HR = 2.49; 95% CI = 1.13-5.50; p = 0.011) and rs22114102 (HR = 1.90; 95% CI = 1.00-3.63; p = 0.028) in ABCB1. Moreover, overall survival (OS) was impacted by rs3842 (HR = 1.84; 95% CI = 1.01-3.33; p = 0.012) and rs2235023 (HR = 2.28; 95% CI = 1.03 = 5.02; p = 0.027) in ABCB1, rs11265571 (HR = 1.59; 95% CI = 0.82-3.08; p = 0.037) and rs2307418 (HR = 73.68; 95% CI = 4.47-1215.31; p = 0.003) in CAR, and rs3732360 (HR = 0.64; 95% CI = 0.40 = 1.04; p = 0.049) in PXR. Taking into account the influence of the tested SNPs on treatment toxicity, we found a significant relationship between allele G of polymorphism in the ABCB1 rs7787082 (OR = 4.46; 95% CI = 1.38-14.39 p = 0.012) and hematological complications assuming the codominant gene inheritance model as well as a significant correlation between the presence of minor allele (G) of SNP rs2725256 in the ABCG2 gene (OR = 4.71; 95% CI = 1.20-18.47; p = 0.026) and the occurrence of non-hematological complications assuming a recessive gene inheritance model. Conclusion: Our data suggest that inherited variants in the genes encoding for proteins involved in the transport of xenobiotics may modify the toxicity and efficacy of dasatinib therapy in CML patients.

16.
Cancers (Basel) ; 14(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291856

ABSTRACT

Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.

17.
Sci Rep ; 12(1): 18100, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302831

ABSTRACT

The incidence of pancreatic ductal adenocarcinoma (PDAC) is different among males and females. This disparity cannot be fully explained by the difference in terms of exposure to known risk factors; therefore, the lower incidence in women could be attributed to sex-specific hormones. A two-phase association study was conducted in 12,387 female subjects (5436 PDAC cases and 6951 controls) to assess the effect on risk of developing PDAC of single nucleotide polymorphisms (SNPs) in 208 genes involved in oestrogen and pregnenolone biosynthesis and oestrogen-mediated signalling. In the discovery phase 14 polymorphisms showed a statistically significant association (P < 0.05). In the replication none of the findings were validated. In addition, a gene-based analysis was performed on the 208 selected genes. Four genes (NR5A2, MED1, NCOA2 and RUNX1) were associated with PDAC risk, but only NR5A2 showed an association (P = 4.08 × 10-5) below the Bonferroni-corrected threshold of statistical significance. In conclusion, despite differences in incidence between males and females, our study did not identify an effect of common polymorphisms in the oestrogen and pregnenolone pathways in relation to PDAC susceptibility. However, we validated the previously reported association between NR5A2 gene variants and PDAC risk.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Female , Humans , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Estrogens/genetics , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pregnenolone , Pancreatic Neoplasms
18.
Cancer Res Commun ; 2(4): 211-219, 2022 04.
Article in English | MEDLINE | ID: mdl-36303815

ABSTRACT

Background: Genome-wide association studies (GWAS) have identified more than 200 susceptibility loci for breast cancer, but these variants explain less than a fifth of the disease risk. Although gene-environment interactions have been proposed to account for some of the remaining heritability, few studies have empirically assessed this. Methods: We obtained genotype and risk factor data from 46,060 cases and 47,929 controls of European ancestry from population-based studies within the Breast Cancer Association Consortium (BCAC). We built gene expression prediction models for 4,864 genes with a significant (P<0.01) heritable component using the transcriptome and genotype data from the Genotype-Tissue Expression (GTEx) project. We leveraged predicted gene expression information to investigate the interactions between gene-centric genetic variation and 14 established risk factors in association with breast cancer risk, using a mixed-effects score test. Results: After adjusting for number of tests using Bonferroni correction, no interaction remained statistically significant. The strongest interaction observed was between the predicted expression of the C13orf45 gene and age at first full-term pregnancy (PGXE=4.44×10-6). Conclusion: In this transcriptome-informed genome-wide gene-environment interaction study of breast cancer, we found no strong support for the role of gene expression in modifying the associations between established risk factors and breast cancer risk. Impact: Our study suggests a limited role of gene-environment interactions in breast cancer risk.


Subject(s)
Breast Neoplasms , Gene-Environment Interaction , Humans , Female , Breast Neoplasms/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Risk Factors
19.
Cancer Epidemiol Biomarkers Prev ; 31(11): 2087-2091, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35984985

ABSTRACT

BACKGROUND: Associations between candidate germline genetic variants and treatment outcome of oxaliplatin, a drug commonly used for patients with colorectal cancer, have been reported but not robustly established. This study aimed to construct polygenic hazard scores (PHSs) as predictive markers for oxaliplatin treatment outcome by using a supervised principal component approach (PCA). METHODS: Genome-wide association analysis for overall survival, including interaction terms (SNP*treatment type) was carried out using two phase III trials, 3,098 resected stage III colon cancer (rCC) patients of NCCTG N0147 and 506 metastatic colorectal cancer (mCRC) patients of NCCTG N9741, separately. SNPs showing interaction with genome-wide significance (P < 5 × 10-8) were selected for PCA to derive a PHS. PHS interaction with treatment was included in Cox regression models to predict outcome. Replication of prediction models was performed in an independent cohort, DACHS. RESULTS: The two PHSs based on the first two principal components of selected SNPs (15SNPs for rCC and 13SNPs for mCRC) were used to construct interaction terms with treatment type and included in models adjusted for clinical covariables. However, in the DACHS study, the addition of the two PHS terms to clinical models did not improve the prediction error in either patients with rCC or mCRC. PHS interaction was also not replicated. CONCLUSIONS: The PHSs derived using principal components efficiently combined multiple predictive SNPs for estimating likelihood of benefit from oxaliplatin versus other treatment but could not be replicated. IMPACT: These results highlight the potential but also challenges in generating evidence for a predictive polygenic score for oxaliplatin efficacy.


Subject(s)
Carcinoma, Renal Cell , Colorectal Neoplasms , Kidney Neoplasms , Rectal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/pathology , Genome-Wide Association Study , Kidney Neoplasms/etiology , Organoplatinum Compounds/therapeutic use , Oxaliplatin/therapeutic use , Principal Component Analysis , Treatment Outcome
20.
J Natl Cancer Inst ; 114(12): 1706-1719, 2022 12 08.
Article in English | MEDLINE | ID: mdl-35723569

ABSTRACT

BACKGROUND: Reproductive factors have been shown to be differentially associated with risk of estrogen receptor (ER)-positive and ER-negative breast cancer. However, their associations with intrinsic-like subtypes are less clear. METHODS: Analyses included up to 23 353 cases and 71 072 controls pooled from 31 population-based case-control or cohort studies in the Breast Cancer Association Consortium across 16 countries on 4 continents. Polytomous logistic regression was used to estimate the association between reproductive factors and risk of breast cancer by intrinsic-like subtypes (luminal A-like, luminal B-like, luminal B-HER2-like, HER2-enriched-like, and triple-negative breast cancer) and by invasiveness. All statistical tests were 2-sided. RESULTS: Compared with nulliparous women, parous women had a lower risk of luminal A-like, luminal B-like, luminal B-HER2-like, and HER2-enriched-like disease. This association was apparent only after approximately 10 years since last birth and became stronger with increasing time (odds ratio [OR] = 0.59, 95% confidence interval [CI] = 0.49 to 0.71; and OR = 0.36, 95% CI = 0.28 to 0.46 for multiparous women with luminal A-like tumors 20 to less than 25 years after last birth and 45 to less than 50 years after last birth, respectively). In contrast, parous women had a higher risk of triple-negative breast cancer right after their last birth (for multiparous women: OR = 3.12, 95% CI = 2.02 to 4.83) that was attenuated with time but persisted for decades (OR = 1.03, 95% CI = 0.79 to 1.34, for multiparous women 25 to less than 30 years after last birth). Older age at first birth (Pheterogeneity < .001 for triple-negative compared with luminal A-like breast cancer) and breastfeeding (Pheterogeneity < .001 for triple-negative compared with luminal A-like breast cancer) were associated with lower risk of triple-negative breast cancer but not with other disease subtypes. Younger age at menarche was associated with higher risk of all subtypes; older age at menopause was associated with higher risk of luminal A-like but not triple-negative breast cancer. Associations for in situ tumors were similar to luminal A-like. CONCLUSIONS: This large and comprehensive study demonstrates a distinct reproductive risk factor profile for triple-negative breast cancer compared with other subtypes, with implications for the understanding of disease etiology and risk prediction.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Breast Neoplasms/etiology , Breast Neoplasms/complications , Receptor, ErbB-2 , Receptors, Progesterone , Receptors, Estrogen , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/etiology , Case-Control Studies , Risk Factors , Biomarkers, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...