Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(3): 2398-2401, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38534768

ABSTRACT

Targeted radionuclide therapy (TRT) is gaining wide and rapid acceptance in clinical practice as it can deliver alpha or beta irradiation to a tumor-associated target which may be present in the tumor cell itself or in the microenvironment [...].

2.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056719

ABSTRACT

BACKGROUND: Macroaggregated human serum albumin (MAA) properties are widely used in nuclear medicine, labelled with 99mTc. The aim of this study is to improve the knowledge about the morphology, size, dimension and physical-chemical characteristics of MAA and their bond with 99mTc and 68Ga. METHODS: Commercial kits of MAA (Pulmocis®) were used. Characterisation through experiments based on SEM, DLS and Stokes' Law were carried out. In vitro experiments for Langmuir isotherms and pH studies on radiolabelling were performed and the stability of the radiometal complex was verified through competition reactions. RESULTS: The study settles the MAA dimension within the range 43-51 µm. The Langmuir isotherm reveals for [99mTc]MAA: Bmax (46.32), h (2.36); for [68Ga]MAA: Bmax (44.54), h (0.893). Dual labelling reveals that MAA does not discriminate different radioisotopes. Experiments on pH placed the optimal pH for labelling with 99mTc at 6. CONCLUSION: Radiolabelling of MAA is possible with high efficiency. The nondiscriminatory MAA bonds make this drug suitable for radiolabelling with different radioisotopes or for dual labelling. This finding illustrates the need to continue investigating MAA chemical and physical characteristics to allow for secure labelling with different isotopes.


Subject(s)
Gallium Radioisotopes
3.
Nanomaterials (Basel) ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34361162

ABSTRACT

Nanoparticles of Human Serum Albumin (NC) labelled with 99mTc are widely used in Nuclear Medicine and represent the gold-standard for the intraoperative detection of the sentinel lymph node in many kinds of cancer, mainly breast cancer and melanoma. A significant amount of radionuclides can be incorporated into the HSA particle, due to the multiple binding sites, and HSA-based nanocolloid catabolism is a fast and easy process that results in innocuous degradation products. NCs labelled with different isotopes represent an interesting radiopharmaceutical for extending diagnostic accuracy and surgical outcome, but the knowledge of the chemical bond between NCs and isotopes has not been fully elucidated, including information on its strength and specificity. The aim of this study is to investigate and compare the physicochemical characteristics of the bond between NCs and 99mTc and 68Ga isotopes. Commercial kits of HSA-based nanocolloid particles (NanoAlbumon®) were used. For this purpose, we have primarily studied the kinetic orders of NC radiolabelling. Langmuir isotherms and pH effect on radiolabelling were tested and the stability of the radiometal complex was verified through competition reactions carried out in presence of different ligands. The future goal of our research is the development of inexpensive and instant kits, easily labelled with a wide spectrum of diagnostic and therapeutic isotopes, thus facilitating the availability of versatile and multipurpose radiopharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...