Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 944: 173804, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38848922

ABSTRACT

Soil and groundwater contamination by organic pollutants from chemical plants presents significant risks to both environmental and human health. We report a significant field trial where a chemical plant in operation showed soil and groundwater pollution, as verified by sampling and laboratory tests. While many remediation methods are effective, they often require the temporary shutdown of plant operations to install necessary equipment. This paper introduces a novel combination of low-disturbance contaminant remediation technologies, including groundwater circulation well (GCW), pump and treat (P&T), and in-situ chemical oxidation (ISCO) technologies, that can be applied on the premises of an active plant without halting production. The groundwater with dissolved contaminants is removed through P&T and GCW, while GCW enhances ISCO that focus on eliminating the remaining hard-to-pump contaminants. Results show: (1) after two years of remediation effort, the contaminant levels in soil and groundwater were significantly reduced; (2) the average concentration reduction rate of four contaminants, including 1,2-dichloroethane, methylbenzene, ethylbenzene, and M&P-xylene, exceeds 98 %; (3) the presented remediation strategy results in the improvement of remediation efficiency. Specifically, the concentration of 1,2-dichloroethane in observation wells dropped from 40,550.7 µg/L to 44.6 µg/L. This study offers a first-of-its-kind commercial deployment of a GCW-based remediation strategy in an active plant setting. Moreover, the combined remediation approach presented here can serve as a model for designing contaminant remediation projects that require minimal operational disruption.

2.
Sci Total Environ ; 926: 171868, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521278

ABSTRACT

The mechanical properties of reaction media in permeable reactive barriers (PRB) is vital in geoenvironmental applications. Bentonite, activated carbon and zeolite, recognized for their excellent adsorption capabilities, are employed as the main reaction media in PRB for the treatment of contaminated underground water. The compaction test and the undrained and unconsolidated triaxial test were carried out to investigate the compression and shear strength of the activated carbon-zeolite mixture and activated carbon-bentonite mixture at various composition ratios. The impact of compaction degree on samples' shear strength was analyzed. The influence of different composition ratios on the mechanical properties and the permeability of each reaction medium were also evaluated. The results show that the mechanical performance of most activated carbon-zeolite (AZs) is not satisfactory compared to natural soil and activated carbon-bentonite mixtures. Activated carbon­sodium bentonite (ANBs) and activated carbon­calcium bentonite (ACBs) present similar compaction characteristics and shear properties. In ANBs and ACBs, the cohesion of mixes with a mass ratio of 1:2 (ANB2 and ACB2) was found lower than that of mixes with mass ratios of 1:1 (ANB1 and ACB1) and 1:3 (ANB3 and ACB3). And in most ANB and ACB mixes, 100 % compaction produced higher moisture content and higher friction angle, but lower cohesion, compared to 92 % compaction degree. And the shear strength behavior of ANBs is dominated by both bentonite and activated carbon. The permeability of ACB1, AZ3 and ACB1-sand are at 1.31 × 10-6 m/s, 1.37 × 10-6 m/s and 7.72 × 10-7 m/s, respectively. These results provide valuable insights into the selection and optimization of reaction media for PRBs in geoenvironmental engineering applications.

3.
Environ Sci Pollut Res Int ; 30(30): 76072-76084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37233926

ABSTRACT

In the present study, the aluminum-containing wastewater treatment residue was modified at 400 °C and 2.5 mol/L HCl and used in the removal of Pb and Cd from an aqueous solution for the first time. The modified sludge was characterized by SEM, XRD, FTIR, and BET. Under the optimized conditions, including pH 6, adsorbent dose 3 g/L, Pb/Cd reaction time 120 and 180 min, and Pb/Cd concentration 400 and 100 mg/L, Pb/Cd adsorption capacity was obtained as 90.72 and 21.39 mg/g, respectively. The adsorption process of sludge before and after modification is more consistent with the quasi-second-order kinetics, and the correlation coefficients R2 are all above 0.99. The fitting of data with the Langmuir isotherm and pseudo-second-order kinetics showed that the adsorption process is monolayer and chemical in nature. The adsorption reaction included ion exchange, electrostatic interaction, surface complexation, cation-π interaction, co-precipitation, and physical adsorption. This work implies that the modified sludge has greater potential in the removal of Pb and Cd from wastewater relative to raw sludge.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/analysis , Temperature , Sewage , Lead , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
4.
Sci Total Environ ; 858(Pt 3): 160107, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36370773

ABSTRACT

Activated sludge (AS) offers great potential for resource recovery considering its high organic and nutrient content. However, low recovery efficiency and high costs are directing the focus toward the high-valuable resource recovery. This study extracted 71.5 ± 5.9 mg/g VSS of alginate-like exopolysaccharides from AS (ALE/AS) and applied it to mortar as a novel biopolymer agent for crack self-healing. With a mortar crack of 120 µm, addition of 0.5 wt% ALE/AS yielded a high crack closure ratio of 86.5 % within 28 days. In comparison to commercial healing agents, marginal flexural strength reduction with ALE/AS addition (17.9 % vs 30.2-50.5 %) was demonstrated. The abundance of COO- group in GG blocks of ALE/AS resulted in a higher cross-link capacity with Ca2+, while the reduction of hydrophilic residues (e.g., COO- and OH) after complexation engendered a lower swelling capacity, which facilitated self-healing and flexural strength maintenance. Molecular dynamics (MD) revealed that lower Ca2+ diffusivity, arising from the stronger electrostatic interactions between the COO- groups and Ca2+, resulted in a high Ca2+ concentration around the cracks, leading to CaCO3 deposition and healed cracks. The outcomes of this study provided light on ALE-based mortar crack healing and presented a possibility for multi-level AS resource recovery.


Subject(s)
Biopolymers , Polysaccharides , Sewage , Polysaccharides/chemistry , Biopolymers/chemistry
5.
Chemosphere ; 308(Pt 1): 136290, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058373

ABSTRACT

Permeable reactive barrier (PRB) is one of the most promising in-situ groundwater remediation technologies due to its low costs and wide immobilization suitability for multiple contaminants. Reactive medium is a key component of PRBs and their selection needs to consider removal effectiveness as well as permeability. Zeolites have been extensively reported as reactive media owing to their high adsorption capacity, diverse pore structure and high stability. Moreover, the application of zeolites can reduce the PRBs fouling and clogging compared to reductants like zero-valence iron (ZVI) due to no formation of secondary precipitates, such as iron monosulfide, in spite of their reactivity to remove organics. This study gives a detailed review of lab-scale applications of zeolites in PRBs in terms of sorption characteristics, mechanisms, column performance and desorption features, as well as their field-scale applications to point out their application tendency in PRBs for contaminated groundwater remediation. On this basis, future prospects and suggestions for using zeolites in PRBs for groundwater remediation were put forward. This study provides a comprehensive and critical review of the lab-scale and field-scale applications of zeolites in PRBs and is expected to guide the future design and applications of adsorbents-based PRBs for groundwater remediation.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Water Pollutants, Chemical , Zeolites , Groundwater/chemistry , Iron/chemistry , Reducing Agents , Water Pollutants, Chemical/analysis
6.
J Environ Sci (China) ; 122: 41-49, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35717089

ABSTRACT

The co-contamination of metals and organic pollutants, such as Pb and methyl tert-butyl ether (MTBE), in groundwater, has become a common and major phenomenon in many contaminated sites. This study evaluated the feasibility of their simultaneous removal with permeable reactive barrier (PRB) packed with mixed zeolites (clinoptilolite and ZSM-5) using fixed-bed column tests and breakthrough curve modeling. The effect of grain size on the permeability of PRB and removal efficacy was also assessed by granular and power clinoptilolite. The replacement of granular clinoptilolite by powder clinoptilolite largely reduced the breakthrough time but increased the saturation time nearly fourfold. The column adsorption capacity of clinoptilolite powders almost tripled that of clinoptilolite granules (130.6 mg/g versus 45.3 mg/g) due to higher specific surface areas. The minimum thickness and corresponding longevity of PRB were calculated as 7.12 cm and 321.5 min when 5% of granular clinoptilolite was mixed with 5% ZSM-5 and 90% sand as mixed PRB reactive media compared with 10.86 cm and 1230.2 min for the application of powder clinoptilolite. This study is expected to provide theoretical support and guidance for the practical application of mixed adsorbents in PRBs.


Subject(s)
Groundwater , Methyl Ethers , Water Pollutants, Chemical , Zeolites , Adsorption , Lead , Powders
7.
Sci Total Environ ; 831: 154708, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35337881

ABSTRACT

Conventional subsurface barrier materials for contamination containment deteriorate in aggressive environments and only have a limited exchange/adsorption capacity for heavy metals. This study focused on the potential use of superabsorbent polymer (SAP) in soil-cement subsurface barriers for enhanced heavy metal sorption and self-healing. The SAP adsorption results for lead, copper, zinc and nickel were well fitted by the Langmuir model. The SAP had the highest adsorption capacity for lead at 175 mg/g, and plays a key role in the removal of the heavy metals in an acidic environment. In addition, the incorporation of SAP in soil-cement increased the ductility and had negligible adverse effects on mechanical and permeability properties. When cracks propagate in the matrix, the SAP is exposed to the ingress of water and swells, and this swelling reaction seals the cracks. The SAP-containing soil-cement demonstrated enhanced self-healing performance in terms of the recovery of permeability. The uniform dispersion and the 3D network of the SAP were observed using micro-CT scanning, and good bonding and self-healing mechanism were confirmed by SEM-EDX analysis. The results suggest the significant potential for the SAP-based approach for the development of more resilient subsurface barriers with enhanced heavy metal sorption and self-healing.


Subject(s)
Metals, Heavy , Soil Pollutants , Adsorption , Metals, Heavy/analysis , Polymers , Soil , Soil Pollutants/analysis
8.
Article in English | MEDLINE | ID: mdl-34886373

ABSTRACT

Soil pollution is one of the major threats to the environment and jeopardizes the provision of key soil ecosystem services. Vertical barriers, including slurry trench walls and walls constructed with soil mix technology, have been employed for decades to control groundwater flow and subsurface contaminant transport. This paper comprehensively reviewed and assessed the typical materials and mechanical and permeability properties of soil-bentonite, cement-bentonite and soil mix barriers, with the values of mix design and engineering properties summarized and compared. In addition, the damage and durability of barrier materials under mechanical, chemical, and environmental stresses were discussed. A number of landmark remediation projects were documented to demonstrate the effectiveness of the use of barrier systems. Recent research about crack-resistant and self-healing barrier materials incorporating polymers and minerals at Cambridge University and performance monitoring techniques were analyzed. Future work should focus on two main areas: the use of geophysical methods for non-destructive monitoring and the optimization of resilient barrier materials.


Subject(s)
Groundwater , Water Pollutants, Chemical , Ecosystem , Environmental Pollution/prevention & control , Humans , Soil , Water Pollutants, Chemical/analysis
9.
Materials (Basel) ; 13(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353221

ABSTRACT

Soil mix cut-off walls have been increasingly used for containment of organic contaminants in polluted land. However, the mixed soil is susceptible to deterioration due to aggressive environmental and mechanical stresses, leading to crack-originated damage and requiring costly maintenance. This paper proposed a novel approach to achieve self-healing properties of soil mix cut-off wall materials triggered by the ingress of organic contaminants. Oil sorbent polymers with high absorption and swelling capacities were incorporated in a cementitious grout and mixed with soil using a laboratory-scale auger setup. The self-healing performance results showed that 500 µm-wide cracks could be bridged and blocked by the swollen oil sorbents, and that the permeability was reduced by almost an order of magnitude after the permeation of liquid paraffin. It was shown by micro-CT scan tests that the network formed by the swollen oil sorbents acted as attachments and binder, preventing the cracked mixed soil sample from crumbling, and that the oil sorbents swelled three times in volume and therefore occupied the air space and blocked the cracks in the matrix. These promising results exhibit the potential for the oil sorbents to provide soil mix cut-off walls in organically-contaminated land with self-healing properties and enhanced durability.

10.
Environ Sci Pollut Res Int ; 26(15): 15229-15247, 2019 May.
Article in English | MEDLINE | ID: mdl-30929171

ABSTRACT

Aeration by airflow technology is a reliable method to accelerate waste biodegradation and stabilization and hence shorten the aftercare period of a landfill. To simulate hydro-biochemical behaviors in this type of landfills, this study develops a model coupling multi-phase flow, multi-component transport and aerobic-anaerobic biodegradation using a computational fluid dynamics (CFD) method. The uniqueness of the model is that it can well describe the evolution of aerobic zone, anaerobic zone, and temperature during aeration and evaluate aeration efficiency considering aerobic and anaerobic biodegradation processes. After being verified using existing in situ and laboratory test results, the model is then employed to reveal the bio-stable zone development, aerobic biochemical reactions around vertical well (VW), and anaerobic reactions away from VW. With an increase in the initial organic matter content (0.1 to 0.4), the bio-stable zone expands at a decreasing speed but with all the horizontal ranges larger than 17 m after an intermittent aeration for 1000 days. When waste intrinsic permeability is equal or greater than 10-11 m2, aeration using a low pressure between 4 and 8 kPa is appropriate. The aeration efficiency would be underestimated if anaerobic biodegradation is neglected because products of anaerobic biodegradation would be oxidized more easily. A horizontal spacing of 17 m is suggested for aeration VWs with a vertical spacing of 10 m for screens. Since a lower aeration frequency can give greater aeration efficiency, a 20-day aeration/20-day leachate recirculation scenario is recommended considering the maximum temperature over a reasonable range. For wet landfills with low temperature, the proportion of aeration can be increased to 0.67 (20-day aeration/10-day leachate recirculation) or an even higher value.


Subject(s)
Bioreactors , Refuse Disposal/methods , Waste Disposal Facilities/instrumentation , Aerobiosis , Biodegradation, Environmental
11.
Environ Sci Pollut Res Int ; 25(15): 14614-14625, 2018 May.
Article in English | MEDLINE | ID: mdl-29532374

ABSTRACT

A dual-permeability hydro-biodegradation model is developed to describe the leachate flow in municipal solid waste (MSW) and predict the long-term settlement induced by biodegradation in bioreactor landfills. The model is verified against Hydrus-1D and a recirculation experiment conducted in a full-scale landfill. Preferential flow and mass transfer between fissure and matrix can be reasonably modeled by the proposed model. A higher recirculation flow rate can speed up the stabilization process of landfill. However, too much recirculation leachate is not economical and environmental friendly. A stabilization speed index and a leachate utilization index are adopted to evaluate the stabilization speed of bioreactor landfill and utilization rate of leachate, respectively, and the optimal recirculation flow rate is estimated. A flow rate of q = 5 × 10-5-5 × 10-4 m/h (equivalent to recirculation intensity of Q = 15-150 L/tonwaste/year) is recommended for recirculation, which has been verified by the field data in numerous bioreactor landfills.


Subject(s)
Bioreactors , Waste Disposal Facilities , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Models, Theoretical , Permeability , Refuse Disposal , Solid Waste/analysis
12.
Environ Sci Pollut Res Int ; 25(6): 5631-5642, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29222661

ABSTRACT

The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W/H T = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S/H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10-6 kg/m3/s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.


Subject(s)
Bioreactors , Models, Theoretical , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Biodegradation, Environmental
13.
Environ Sci Pollut Res Int ; 24(25): 20811-20817, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28791528

ABSTRACT

Leachate is a polluting liquid which may cause harmful effects on human health or the environment without a tightly control manner. The leachate management is an important part of the design and operation of bioreactor landfills. To detect the leachate distribution in Laogang Landfill, China, the measurement of electrical resistivity tomography (ERT) was carried out in three areas with different ages. ERT method proved to be an effective non-invasive geophysical method in bioreactor landfills, and the physical properties of waste samples obtained by boreholes were tested in a laboratory. The correlation between the resistivity and the moisture content was described by Archie's law. The result shows that the moisture content of fresh waste is inhomogeneous, while that of aged waste increases with depth. A pseudo 3D model of the moisture content was proposed to improve the understanding of leachate distribution and exhibit the accuracy of the ERT method.


Subject(s)
Environmental Monitoring/methods , Soil Pollutants/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Bioreactors , China , Electric Impedance , Environmental Monitoring/instrumentation , Refuse Disposal , Tomography/methods
14.
Waste Manag Res ; 35(10): 1072-1083, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28825359

ABSTRACT

Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.


Subject(s)
Bioreactors , Refuse Disposal , Solid Waste , Waste Disposal Facilities
15.
Waste Manag Res ; 34(12): 1307-1315, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27821683

ABSTRACT

Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state.


Subject(s)
Bioreactors , Models, Theoretical , Refuse Disposal/instrumentation , Waste Disposal Facilities , Water Pollutants, Chemical , Anisotropy , Equipment Design , Hydrology/methods , Refuse Disposal/methods , Reproducibility of Results
16.
Environ Sci Pollut Res Int ; 22(12): 9067-79, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25874416

ABSTRACT

Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills.


Subject(s)
Bioreactors , Models, Theoretical , Refuse Disposal/methods , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Permeability , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...