Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37687764

ABSTRACT

In this study, the prestressed coating reinforcement method was employed to create kyanite-coated zirconia toughened alumina (ZTA) prestressed ceramics. Due to the mismatch of the coefficient of thermal expansion (CTE) between the coating and substrate, compressive residual stress was introduced in the coating. The effects of compressive residual stress on the mechanical properties of ZTA have been demonstrated. Results show that the flexural strength of the kyanite-coated ZTA ceramics improved by 40% at room temperature compared to ZTA ceramics. In addition, the temperature dependence of mechanical properties has also been discussed. And the results show that the reinforcement gradually diminished with increasing temperature and eventually disappeared at 1000 °C. The modulus of elasticity of the material also exhibits a decreasing trend. Furthermore, the introduction of the prestressing coating enhanced the thermal shock resistance, but the strengthening effect diminished as the temperature increased and completely disappeared at 800 °C.

2.
RSC Adv ; 13(4): 2736-2744, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741153

ABSTRACT

It is predicted that the thickness of a coating has major effects on a substrate in terms of mechanical and thermal properties. In this study, an Al2O3-ZrO2-SiO2 slurry was prepared as a coating material, which formed an alumina-zirconia-mullite composite coating after sintering. The alumina-zirconia-mullite composite coating was coated on a zirconia substrate to generate compressive stress in the coating due to the mismatch of the coefficient of thermal expansion (CTE). A series of coated samples with different coating thicknesses from ∼10 µm to ∼200 µm were prepared to investigate the effects of coating thickness. The residual compressive stress, thermal conductivity, CTE, and Young's modulus of the coating material were determined by relative methods, and the flexural strength of the coated and uncoated samples was measured by 3-point bending. The strength of the coated samples was 1362.98 ± 30.29 MPa, which is a 54.07% enhancement compared to the uncoated samples. The thermal conductivity of the coated samples was also increased compared to that of the uncoated samples. For a given thickness of the substrate of 2 mm, there was an optimum thickness of the coating of 90 µm, which showed the greatest strength compared to the other samples. Coatings that were too thin or too thick did not show the best reinforcement. Moreover, the porosity of the coated samples was also determined and discussed in this study. Comparison samples without SiO2 were also manufactured, and their flexural strength and thermal conductivity were found to not be as good as the samples with SiO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...