Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Case Rep ; 8(6): 944-949, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577239

ABSTRACT

Hearing aid impression material composed of vinylpolysiloxane is an ideal bolus material which may be used to aid in delivery of adjuvant radiation to complex surgical defects of the head and neck. It is affordable, easily accessed, and efficient.

2.
J Appl Clin Med Phys ; 18(1): 90-95, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28291908

ABSTRACT

In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. Delivery accuracy was examined with an emphasis on the impact of using short gating windows (low monitor unit beam-on segments) or long beam hold times. The performance was assessed using a 20cm by 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Gated delivery measurements were also performed for two SBRT plans delivered using volumetric modulated arc therapy (VMAT). Tests included both free-breathing based gating (covering a variety of gating windows) and simulated breath-hold based gating. An IBA MatriXX 2D ion chamber array was used for data collection, and the gating accuracy at low MU was evaluated using gamma passing rates. For the 20 cm by 20 cm open field, the measurements generally showed close agreement between the gated and non-gated beam deliveries. Discrepancies, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on times. The discrepancies observed for these tight gating windows can be attributed to the small number of monitor units delivered during each beam-on segment. Dose distribution analysis from the delivery of the two SBRT plans showed gamma passing rates (± 1%, 2%/1 mm) in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma passing rate of free-breathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. In conclusion, the results demonstrate that Elekta linacs can accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. Some caution should be exercised with the use of very tight gating windows.


Subject(s)
Lung Neoplasms/surgery , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiratory-Gated Imaging Techniques/methods , Breath Holding , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
3.
Int J Radiat Oncol Biol Phys ; 83(2): e251-6, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22365622

ABSTRACT

PURPOSE: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). METHODS AND MATERIALS: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle(3) SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. RESULTS: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. CONCLUSIONS: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Movement , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiration , Tumor Burden/radiation effects , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Radiosurgery/instrumentation , Radiotherapy Dosage , Retrospective Studies
4.
Med Phys ; 38(11): 6106-18, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22047375

ABSTRACT

PURPOSE: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. METHODS: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle(3) planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm∕deg. Dose distributions were calculated using the convolution∕superposition algorithm in the Pinnacle(3) planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. RESULTS: The use of a more restrictive leaf motion constraint (less than 1-2 mm∕deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm∕deg) results in improved plan quality but can lead to less accurate dose distribution as evidenced by increasing discrepancies between the planned and the delivered doses. For example, the results from our patient-specific quality assurance measurements demonstrated that the average gamma analysis passing rate decreased from 98% to 80% when the allowable leaf motion increased from 3 to 20 mm∕deg. Larger leaf motion constraints also led to longer treatment delivery times (2 to 4 folds) due to the additional MLC leaf motion. CONCLUSIONS: Leaf motion constraints significantly impact IMAT plans in terms of plan quality, delivery accuracy, and delivery efficiency with the impact magnified for more complex cases. Our studies indicate that a leaf motion constraint of 2 to 3 mm∕deg of gantry rotation can provide an optimal balance between plan quality, delivery accuracy, and efficiency.


Subject(s)
Motion , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Head and Neck Neoplasms/radiotherapy , Humans , Male , Pancreatic Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
5.
Front Radiat Ther Oncol ; 43: 80-98, 2011.
Article in English | MEDLINE | ID: mdl-21625149

ABSTRACT

Intensity-modulated arc therapy (IMAT) is a rotational approach to radiation therapy delivered on a conventional linear accelerator using a conventional multileaf collimator. There are 2 key advantages of IMAT. First, the rotational nature of the delivery provides great flexibility in shaping each dose distribution. As a result, IMAT can provide dosimetric advantages relative to fixed-field intensity-modulated radiation therapy (IMRT). The second advantage is the highly efficient nature of the delivery. For centers with an active IMRT program, the clinical implementation of IMAT should be relatively straightforward. For clinical implementation of IMAT, it is important to fully characterize the accuracy of the dose model used, and the performance of the quality assurance equipment.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods
6.
Phys Med Biol ; 55(21): 6475-90, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20959688

ABSTRACT

Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Algorithms , Humans , Male , Neoplasms/pathology , Neoplasms/radiotherapy , Radiotherapy Dosage
7.
Med Phys ; 37(3): 1350-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20384272

ABSTRACT

PURPOSE: Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are arc-based approaches to IMRT delivery. The objective of this study is to compare VMAT to both HT and fixed field IMRT in terms of plan quality, delivery efficiency, and accuracy. METHODS: Eighteen cases including six prostate, six head-and-neck, and six lung cases were selected for this study. IMRT plans were developed using direct machine parameter optimization in the Pinnacle3 treatment planning system. HT plans were developed using a Hi-Art II planning station. VMAT plans were generated using both the Pinnacle3 SmartArc IMRT module and a home-grown arc sequencing algorithm. VMAT and HT plans were delivered using Elekta's PreciseBeam VMAT linac control system (Elekta AB, Stockholm, Sweden) and a TomoTherapy Hi-Art II system (TomoTherapy Inc., Madison, WI), respectively. Treatment plan quality assurance (QA) for VMAT was performed using the IBA MatriXX system while an ion chamber and films were used for HT plan QA. RESULTS: The results demonstrate that both VMAT and HT are capable of providing more uniform target doses and improved normal tissue sparing as compared with fixed field IMRT. In terms of delivery efficiency, VMAT plan deliveries on average took 2.2 min for prostate and lung cases and 4.6 min for head-and-neck cases. These values increased to 4.7 and 7.0 min for HT plans. CONCLUSIONS: Both VMAT and HT plans can be delivered accurately based on their own QA standards. Overall, VMAT was able to provide approximately a 40% reduction in treatment time while maintaining comparable plan quality to that of HT.


Subject(s)
Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Body Burden , Humans , Quality Control , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
8.
Phys Med Biol ; 54(21): 6725-38, 2009 Nov 07.
Article in English | MEDLINE | ID: mdl-19841516

ABSTRACT

The recent development in linear accelerator control systems, named volumetric-modulated arc therapy (VMAT), has generated significant interest in arc-based intensity-modulated radiation therapy (IMRT). The VMAT delivery technique features simultaneous changes in dose rate, gantry angle and gantry rotation speed as well as multi-leaf collimator (MLC) leaf positions while radiation is on. In this paper, we describe a generalized VMAT planning tool that is designed to take full advantage of the capabilities of the new linac control systems. The algorithm incorporates all of the MLC delivery constraints such as restrictions on MLC leaf interdigitation and the MLC leaf velocity constraints. A key feature of the algorithm is that it is able to plan for both single- and multiple-arc deliveries. Compared to conventional step-and-shoot IMRT plans, our VMAT plans created using this tool can achieve similar or better plan quality with less MU and better delivery efficiency. The accuracy of the obtained VMAT plans is also demonstrated through plan verifications performed on an Elekta Synergy linear accelerator equipped with a conventional MLC of 1 cm leaf width using a PreciseBeam VMAT linac control system.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Body Burden , Dose-Response Relationship, Radiation , Humans , Male , Particle Accelerators , Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care , Radiation Dosage , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results
9.
Phys Med Biol ; 53(17): 4733-46, 2008 Sep 07.
Article in English | MEDLINE | ID: mdl-18701770

ABSTRACT

Dose calculations for radiation arc therapy are traditionally performed by approximating continuous delivery arcs with multiple static beams. For 3D conformal arc treatments, the shape and weight variation per degree is usually small enough to allow arcs to be approximated by static beams separated by 5 degrees -10 degrees . But with intensity-modulated arc therapy (IMAT), the variation in shape and dose per degree can be large enough to require a finer angular spacing. With the increase in the number of beams, a deterministic dose calculation method, such as collapsed-cone convolution/superposition, will require proportionally longer computational times, which may not be practical clinically. We propose to use a homegrown Monte Carlo kernel-superposition technique (MCKS) to compute doses for rotational delivery. The IMAT plans were generated with 36 static beams, which were subsequently interpolated into finer angular intervals for dose calculation to mimic the continuous arc delivery. Since MCKS uses random sampling of photons, the dose computation time only increased insignificantly for the interpolated-static-beam plans that may involve up to 720 beams. Ten past IMRT cases were selected for this study. Each case took approximately 15-30 min to compute on a single CPU running Mac OS X using the MCKS method. The need for a finer beam spacing is dictated by how fast the beam weights and aperture shapes change between the adjacent static planning beam angles. MCKS, however, obviates the concern by allowing hundreds of beams to be calculated in practically the same time as for a few beams. For more than 43 beams, MCKS usually takes less CPU time than the collapsed-cone algorithm used by the Pinnacle(3) planning system.


Subject(s)
Imaging, Three-Dimensional/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Computers , Humans , Models, Statistical , Monte Carlo Method , Photons , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted , Radiotherapy, Conformal/methods , Software , Stochastic Processes
11.
Med Phys ; 35(1): 61-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18293562

ABSTRACT

Intensity-modulated arc therapy (IMAT) is a rotational IMRT technique. It uses a set of overlapping or nonoverlapping arcs to create a prescribed dose distribution. Despite its numerous advantages, IMAT has not gained widespread clinical applications. This is mainly due to the lack of an effective IMAT leaf-sequencing algorithm that can convert the optimized intensity patterns for all beam directions into IMAT treatment arcs. To address this problem, we have developed an IMAT leaf-sequencing algorithm and software using graph algorithms in computer science. The input to our leaf-sequencing software includes (1) a set of (continuous) intensity patterns optimized by a treatment planning system at a sequence of equally spaced beam angles (typically 10 degrees apart), (2) a maximum leaf motion constraint, and (3) the number of desired arcs, k. The output is a set of treatment arcs that best approximates the set of optimized intensity patterns at all beam angles with guaranteed smooth delivery without violating the maximum leaf motion constraint. The new algorithm consists of the following key steps. First, the optimized intensity patterns are segmented into intensity profiles that are aligned with individual MLC leaf pairs. Then each intensity profile is segmented into k MLC leaf openings using a k-link shortest path algorithm. The leaf openings for all beam angles are subsequently connected together to form 1D IMAT arcs under the maximum leaf motion constraint using a shortest path algorithm. Finally, the 1D IMAT arcs are combined to form IMAT treatment arcs of MLC apertures. The performance of the implemented leaf-sequencing software has been tested for four treatment sites (prostate, breast, head and neck, and lung). In all cases, our leaf-sequencing algorithm produces efficient and highly conformal IMAT plans that rival their counterpart, the tomotherapy plans, and significantly improve the IMRT plans. Algorithm execution times ranging from a few seconds to 2 min are observed on a laptop computer equipped with a 2.0 GHz Pentium M processor.


Subject(s)
Algorithms , Radiotherapy, Intensity-Modulated/methods , Computer Simulation , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/radiotherapy , Female , Head/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Male , Neck/diagnostic imaging , Prostate/diagnostic imaging , Radiography , Radiotherapy Planning, Computer-Assisted , Software , Tomography
12.
Int J Radiat Oncol Biol Phys ; 69(1): 240-50, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17707278

ABSTRACT

PURPOSE: Intensity-modulated arc therapy (IMAT) is an arc-based approach to intensity-modulated radiotherapy (IMRT) that can be delivered on a conventional linear accelerator using a conventional multileaf collimator. In a previous work, we demonstrated that our arc-sequencing algorithm can produce highly conformal IMAT plans. Through plan comparisons, we explored the ability of IMAT to serve as an alternative to helical tomotherapy. METHODS AND MATERIALS: The IMAT plans were created for 10 patients previously treated with helical tomotherapy. Treatment plan comparisons, according to the target dose coverage and critical structure sparing, were performed to determine whether similar plan quality could be achieved using IMAT. RESULTS: In 8 of 10 patient cases, IMAT was able to provide plan quality comparable to that of helical tomotherapy. In 2 of these 8 cases, the use of non-axial coplanar or non-coplanar arcs in IMAT planning led to significant improvements in normal tissue sparing. The remaining 2 cases posed particular dosimetric challenges. In 1 case, the target was immediately adjacent to a spinal cord that had received previous irradiation. The second case involved multiple target volumes and multiple prescription levels. Both IMAT and tomotherapy were able to produce clinically acceptable plans. Tomotherapy, however, provided a more uniform target dose and improved critical structure sparing. CONCLUSIONS: For most cases, IMAT can provide plan qualities comparable to that of helical tomotherapy. For some intracranial tumors, IMAT's ability to deliver non-coplanar arcs led to significant dosimetric improvements. Helical tomotherapy, however, can provide improved dosimetric results in the most complex cases.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Male , Neoplasms/diagnostic imaging , Orbital Neoplasms/diagnostic imaging , Orbital Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/radiotherapy , Tomography, Spiral Computed
13.
Technol Cancer Res Treat ; 5(5): 451-64, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16981788

ABSTRACT

As intensity modulated radiation therapy (IMRT) becomes routine clinical practice, its advantages and limitations are better understood. With these new understandings, some new developments have emerged in an effort to alleviate the limitations of the current IMRT practice. This article describes a few of these efforts made at the University of Maryland, including: i) improving IMRT efficiency with direct aperture optimization; ii) broadening the scope of optimization to include the mode of delivery and beam angles; and iii) new planning methods for intensity modulated arc therapy (IMAT).


Subject(s)
Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Planning, Computer-Assisted
14.
Med Phys ; 33(4): 859-67, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16696461

ABSTRACT

A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for step-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-optimization (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the optimized and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each optimized intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously optimizes both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases were selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the optimized intensity maps were extracted from the Pinnacle3 treatment planning system. The CIMO algorithm was applied, and the optimized aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the optimized and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Dose Fractionation, Radiation , Humans , Radiotherapy Dosage , Relative Biological Effectiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...