Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000242

ABSTRACT

Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.


Subject(s)
Acute Lung Injury , Disease Models, Animal , Lipopolysaccharides , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/drug therapy , Mice , Humans , Inflammation/pathology , Inflammation/metabolism , Inflammation/drug therapy , Male , Cell Extracts/pharmacology , Cell Extracts/therapeutic use , NF-kappa B/metabolism , Bronchoalveolar Lavage Fluid , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Cytokines/metabolism , Inflammation Mediators/metabolism , Lung/pathology , Lung/metabolism , Lung/drug effects , Bacterial Lysates
2.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36290772

ABSTRACT

The association between asthma and oxidative stress remains controversial. Oxidative stress-induced ferroptosis has not been extensively studied in asthma models. This study was performed to investigate the anti-asthmatic and anti-ferroptotic effects of fermented and aged ginseng sprouts (FAGS) with enhanced antioxidant activity and its main component, compound K (CK), in a mouse model of ovalbumin (OVA)-induced allergic asthma. The experimental asthma model was sensitized and challenged with OVA. During the challenge period, two different concentrations of FAGS and CK were administered via oral gavage. Asthmatic parameters were analyzed in bronchoalveolar lavage fluid (BALF), blood, and lung tissue. CK, among the ginsenosides analyzed, was highly increased in FAGS compared with GS. Asthma parameters, such as Th2 cytokine and IgE production, mast cell activation, goblet cell hyperplasia, hyperresponsiveness, and inflammation, were dramatically increased in the OVA group. Oxidation and ferroptosis markers were increased in the OVA group. The asthma parameters and ferroptosis markers were markedly decreased in the OVA + FAGS and OVA + CK groups. These results showed that FAGS and CK alleviated asthma parameters in an allergic asthma mouse model by inhibiting inflammation and ferroptosis. Our findings suggest that FAGS and CK could be used as potential treatments for allergic asthma.

SELECTION OF CITATIONS
SEARCH DETAIL
...