Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5557, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956415

ABSTRACT

Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.


Subject(s)
DNA , Extracellular Traps , Hemostasis , Hemostatics , Hydrogels , Wound Healing , Animals , Extracellular Traps/metabolism , Extracellular Traps/drug effects , DNA/chemistry , Male , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Hemostasis/drug effects , Wound Healing/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Rats, Sprague-Dawley , Hemorrhage , Humans , Neutrophils/metabolism , Disease Models, Animal
2.
Macromol Rapid Commun ; 43(19): e2200281, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35575627

ABSTRACT

Tailoring the mechanical properties has always been a key to the field of hydrogels in terms of different applications. Particularly, DNA hydrogels offer an unambiguous way to precisely tune the mechanical properties, largely on account of their programmable sequences, abundant responding toolbox, and various ligation approaches. In this review, DNA hydrogels from the perspective of mechanical properties, from a synthetic standpoint to different applications, are introduced. The relationship between the structure and their mechanical properties in DNA hydrogels and the methods of regulating the mechanical properties of DNA hydrogels are specifically summarized. Furthermore, several recent applications of DNA hydrogels in relation to their mechanical properties are discussed. Benefiting from the tunability and flexibility, rational design of mechanical properties in DNA hydrogels provided unheralded interest from fundamental science to extensive applications.


Subject(s)
DNA , Hydrogels , DNA/chemistry , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL