Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930971

ABSTRACT

The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalkylation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluoromethyl products in good yields. The products can then be further converted into fluoroalkylated para-quinone methides and α-fluoroalkylated diarylmethanes.

2.
Orthop Surg ; 16(7): 1695-1709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747083

ABSTRACT

OBJECTIVE: The current investigation sought to utilize finite element analysis to replicate the biomechanical effects of different fixation methods, with the objective of establishing a theoretical framework for the optimal choice of modalities in managing Pauwels type III femoral neck fractures. METHODS: The Pauwels type III fracture configuration, characterized by angles of 70°, was simulated in conjunction with six distinct internal fixation methods, including cannulated compression screw (CCS), dynamic hip screw (DHS), DHS with de-rotational screw (DS), CCS with medial buttress plate (MBP), proximal femoral nail anti-rotation (PFNA), and femoral neck system (FNS). These models were developed and refined using Geomagic and SolidWorks software. Subsequently, finite element analysis was conducted utilizing Ansys software, incorporating axial loading, torsional loading, yield loading and cyclic loading. RESULTS: Under axial loading conditions, the peak stress values for internal fixation and the femur were found to be highest for CCS (454.4; 215.4 MPa) and CCS + MBP (797.2; 284.2 MPa), respectively. The corresponding maximum and minimum displacements for internal fixation were recorded as 6.65 mm for CCS and 6.44 mm for CCS + MBP. When subjected to torsional loading, the peak stress values for internal fixation were highest for CCS + MBP (153.6 MPa) and DHS + DS (72.8 MPa), while for the femur, the maximum and minimum peak stress values were observed for CCS + MBP (119.3 MPa) and FNS (17.6 MPa), respectively. Furthermore, the maximum and minimum displacements for internal fixation were measured as 0.249 mm for CCS + MBP and 0.205 mm for PFNA. Additionally, all six internal fixation models showed excellent performance in terms of yield load and fatigue life. CONCLUSION: CCS + MBP had the best initial mechanical stability in treatment for Pauwels type III fracture. However, the MBP was found to be more susceptible to shear stress, potentially increasing the risk of plate breakage. Furthermore, the DHS + DS exhibited superior biomechanical stability compared to CCS, DHS, and PFNA, thereby offering a more conducive environment for fracture healing. Additionally, it appeared that FNS represented a promising treatment strategy, warranting further validation in future studies.


Subject(s)
Bone Plates , Bone Screws , Femoral Neck Fractures , Finite Element Analysis , Fracture Fixation, Internal , Humans , Fracture Fixation, Internal/methods , Femoral Neck Fractures/surgery , Biomechanical Phenomena , Weight-Bearing , Bone Nails , Stress, Mechanical
3.
J Cancer ; 15(11): 3338-3349, 2024.
Article in English | MEDLINE | ID: mdl-38817860

ABSTRACT

The infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the most common causes of death in AIDS patients. Our studies have found that KSHV can infect SH-SY5Y cells (named SK-RG) in vivo and mTOR was up-regulated, which results in remarkable enhancement of cell proliferation, migration. But the regulatory role of mTOR in KSHV infected neurons has not yet been fully elucidated. Here, we find that miR-769-3p is decreased in SK-RG cells, which can exert anti-KSHV effect through negatively regulating the expression of mTOR. The knockdown of mTOR or overexpress of miR-769-3p decreased the proliferation, migration ability and cell cycle related protein of SK-RG cells, and the expression of KSHV related genes. In contrast, activating mTOR function by 3BDO treatment weakened the cellular behaviors of miR-769-3p overexpressing cells. Meanwhile, overexpressed miR-769-3p and rapamycin showed a shared inhibition trend in the effects on cell proliferation and motility. Our data indicated that miR-769-3p can inhibit cell proliferation and migration by down regulating mTOR in KSHV infected SH-SY5Y cells, and can be a candidate molecule for anti-KSHV therapy.

4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474177

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Subject(s)
Herpesvirus 8, Human , MicroRNAs , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Ganciclovir/pharmacology , MicroRNAs/genetics , Sarcoma, Kaposi/genetics
5.
Plant Sci ; 341: 111996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272070

ABSTRACT

During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.


Subject(s)
Helianthus , Seedlings , Germination/genetics , Helianthus/genetics , Helianthus/metabolism , Abscisic Acid/metabolism , Seeds/metabolism , Gibberellins/metabolism , Fatty Acids/metabolism , Triglycerides/metabolism , Gene Expression Regulation, Plant
6.
Curr Mol Pharmacol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38258595

ABSTRACT

BACKGROUND: This study aimed to investigate the influence of Notch1 on c-Fos and the effect of c-Fos on the proliferation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected neuronal cells. METHODS: Real-time PCR and western blotting were used to determine c-Fos expression levels in KSHV-infected (SK-RG) and uninfected SH-SY5Y cells. C-Fos levels were measured again in SK-RG cells with or without Notch1 knockdown. Next, we measured c-Fos and p-c-Fos concentrations after treatment with the Notch1 γ-secretase inhibitor LY-411575 and the Notch1 activator Jagged-1. MTT and Ki-67 staining were used to evaluate the proliferation ability of cells after c-Fos levels downregulation. CyclinD1, CDK6, and CDK4 expression levels and cell cycle were analyzed by western blotting and flow cytometry, respectively. After the c-Fos intervention, the KSHV copy number and gene expression of RTA, LANA and K8.1 were analyzed by real-time TaqMan PCR. RESULTS: C-Fos was up-regulated in KSHV-infected SK-RG cells. However, the siRNA-mediated knockdown of Notch1 resulted in a significant decrease in the levels of c-Fos and p-c-Fos (P <0.01, P <0.001). Additionally, a decrease in Cyclin D1, CDK6, and CDK4 was also detected. The Notch1 inhibitor LY-411575 showed the potential to down-regulate the levels of c-Fos and p-c-Fos, which was consistent with Notch1 knockdown group (P <0.01), whereas the expression and phosphorylation of c-Fos were remarkably up-regulated by treatment of Notch1 activator Jagged-1 (P <0.05). In addition, our data obtained by MTT and Ki-67 staining revealed that the c-Fos down-regulation led to a significant reduction in cell viability and proliferation of the SK-RG cells (P <0.001). Moreover, FACS analysis showed that the cell cycle was arrested in the G0/G1 stage, and the expressions of Cyclin D1, CDK6, and CDK4 were down-regulated in the c-Fos-knockdown SK-RG cells (P <0.05). Reduction in total KSHV copy number and expressions of viral genes (RTA, LANA and K8.1) were also detected in c-Fos down-regulated SK-RG cells (P <0.05). CONCLUSION: Our findings strongly indicate that c-Fos plays a crucial role in the promotion of cell proliferation through Notch1 signaling in KSHV-infected cells. Furthermore, our results suggest that the inhibition of expression of key viral pathogenic proteins is likely involved in this process.

7.
Nature ; 625(7995): 611-617, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123676

ABSTRACT

The respiratory syncytial virus (RSV) polymerase is a multifunctional RNA-dependent RNA polymerase composed of the large (L) protein and the phosphoprotein (P). It transcribes the RNA genome into ten viral mRNAs and replicates full-length viral genomic and antigenomic RNAs1. The RSV polymerase initiates RNA synthesis by binding to the conserved 3'-terminal RNA promoters of the genome or antigenome2. However, the lack of a structure of the RSV polymerase bound to the RNA promoter has impeded the mechanistic understanding of RSV RNA synthesis. Here we report cryogenic electron microscopy structures of the RSV polymerase bound to its genomic and antigenomic viral RNA promoters, representing two of the first structures of an RNA-dependent RNA polymerase in complex with its RNA promoters in non-segmented negative-sense RNA viruses. The overall structures of the promoter-bound RSV polymerases are similar to that of the unbound (apo) polymerase. Our structures illustrate the interactions between the RSV polymerase and the RNA promoters and provide the structural basis for the initiation of RNA synthesis at positions 1 and 3 of the RSV promoters. These structures offer a deeper understanding of the pre-initiation state of the RSV polymerase and could aid in antiviral research against RSV.


Subject(s)
Promoter Regions, Genetic , RNA-Dependent RNA Polymerase , Respiratory Syncytial Virus, Human , Promoter Regions, Genetic/genetics , Respiratory Syncytial Virus, Human/enzymology , Respiratory Syncytial Virus, Human/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/ultrastructure , Virus Replication/genetics , Cryoelectron Microscopy , Subgenomic RNA/biosynthesis , Subgenomic RNA/genetics , Subgenomic RNA/metabolism
8.
Front Mol Biosci ; 10: 1289650, 2023.
Article in English | MEDLINE | ID: mdl-38028556

ABSTRACT

Abnormal translate regulation is an important phenomenon in cancer initiation and progression. Eukaryotic translation initiation factor 4A1 (eIF4A1) protein is an ATP-dependent Ribonucleic Acid (RNA) helicase, which is essential for translation and has bidirectional RNA unwinders function. In this review, we discuss the levels of expression, regulatory mechanisms and protein functions of eIF4A1 in different human tumors. eIF4A1 is often involved as a target of microRNAs or long non-coding RNAs during the epithelial-mesenchymal transition, associating with the proliferation and metastasis of tumor cells. eIF4A1 protein exhibits the promising biomarker for rapid diagnosis of pre-cancer lesions, histological phenotypes, clinical staging diagnosis and outcome prediction, which provides a novel strategy for precise medical care and target therapy for patients with tumors at the same time, relevant small molecule inhibitors have also been applied in clinical practice, providing reliable theoretical support and clinical basis for the development of this gene target.

9.
Front Plant Sci ; 14: 1230331, 2023.
Article in English | MEDLINE | ID: mdl-37790791

ABSTRACT

Introduction: Heat stress is a vital factor which restricts rice seed quality and yield. However, the response mechanism to heat stress in the mid filling stage of rice seed is unclear. Methods: In the present study we integrated phenotypic analysis with biochemical, hormone, and gene expression analysis in order to explore technologies for improving rice seeds heat tolerance and subsequent seed germination. Results: Spermidine (Spd) application effectively alleviated the damage of heat stress treatment during mid-filling stage (HTM, 12-20 days after pollination) on seed development, promoted subsequent seed germination and seedlings establishment. Spd significantly increased seed dry weight, starch and amylose contents during seed development under heat stress, and improved seed germinate, seedlings establishment and seedling characteristics during germination time. Biochemical analysis indicated that, HTM significantly decreased the activities of several starch synthase enzymes and led to a decrease in starch content. While Spd treatment significantly enhanced the activities of ADP-glucose pyrophosphorylas and granule-bound starch synthase, as well as the corresponding-genes expressions in HTM rice seeds, resulting in the increases of amylose and total starch contents. In addition, Spd significantly increased the catalase and glutathione reductase activities together with corresponding-genes expressions, and lowered the overaccumulation of H2O2 and malondialdehyde in HTM seeds. In the subsequent seed germination process, HTM+Spd seeds exhibited dramatically up-regulated levels of soluble sugars, glucose, ATP and energy charges. Consistently, HTM+Spd seeds showed significantly increased of α-amylose and α-glucosidase activities as well as corresponding-genes expressions during early germination. Moreover, HTM evidently increased the abscisic acid (ABA) content, decreased the gibberellin (GA) content, and accordingly significantly declined the GA/ABA ratio during early rice seeds germination. However, Spd treatment did not significantly affect the metabolism of GA and ABA in seed germination stage. Discussion: The present study suggested that Spd treatment could effectively alleviate the negative impact of HTM on seed development and the subsequent seed germination, which might be closely correlated with starch synthesis and antioxidant defense during seed filling period, starch decomposition and energy supply in seed germination period.

10.
PLoS One ; 18(8): e0289563, 2023.
Article in English | MEDLINE | ID: mdl-37535595

ABSTRACT

Chilling stress is an important constraint for kale seed germination and seedlings establishment. It is vital to develop an effective approach to enhance kale seed germination ability under chilling stress. The present study reported that spermidine (Spd) could improve seed chilling tolerance in two kale cultivars 'Nagoya' (MGW) and 'Pigeon' (BB) during germination. The results showed that MGW was cold tolerant with a 90.67% germination percentage (GP) under chilling stress, while BB was cold sensitive with a 70.67% GP under chilling stress. Spd content in MGW and BB seeds during seed germination were up-regulated and down-regulated by chilling stress, respectively. Besides, chilling stress apparently decreased the gibberellin (GA) and ethylene (ET) contents, while increased the levels of abscisic acid (ABA) and reactive oxygen species (ROS) in MGW and BB seeds during germination. Exogenous Spd application increased GA, ET contents and decreased ABA content through regulating the gene expressions of metabolic-related enzymes, thus effectively alleviating the low temperature damage on kale seed germination. Besides, Spd significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD), and reduced the levels of hydrogen peroxide (H2O2) and superoxide anion (O2·-). The present study demonstrated that endogenous Spd metabolism plays an important role in kale seed germination under chilling stress. The effect of exogenous Spd on the metabolism of endogenous Spd, GA, ABA, ET and antioxidant enzymes might be the important reason for promoting the kale seed vigor at low temperature.


Subject(s)
Brassica , Spermidine , Spermidine/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Brassica/metabolism , Hydrogen Peroxide/metabolism , Germination , Seedlings/metabolism , Abscisic Acid/metabolism , Seeds/metabolism
11.
J Org Chem ; 88(14): 10206-10211, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37436148

ABSTRACT

The photoredox-catalyzed 1,6-difluoromethylation of 3-methyl-4-nitro-5-styrylisoxazole with HCF2SO2Na has been developed. Structurally diverse difluoromethylated products were obtained in good yields, and their further transformations were also investigated. The di-, tri-, and monofluoromethylation of the substrates were compared, and the yield of the difluoromethylation was the highest. DFT calculations revealed that in the difluoromethylation reaction the CF2H radical was nucleophilic, and the transition state activation energy was the lowest.

12.
Microorganisms ; 11(6)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37375110

ABSTRACT

Respiratory Syncytial Virus (RSV) is the top cause of infant hospitalization globally, with no effective treatments available. Researchers have sought small molecules to target the RNA-dependent RNA Polymerase (RdRP) of RSV, which is essential for replication and transcription. Based on the cryo-EM structure of the RSV polymerase, in silico computational analysis including molecular docking and the protein-ligand simulation of a database, including 6554 molecules, is currently undergoing phases 1-4 of clinical trials and has resulted in the top ten repurposed compound candidates against the RSV polymerase, including Micafungin, Totrombopag, and Verubecestat. We performed the same procedure to evaluate 18 small molecules from previous studies and chose the top four compounds for comparison. Among the top identified repurposed compounds, Micafungin, an antifungal medication, showed significant inhibition and binding affinity improvements over current inhibitors such as ALS-8112 and Ribavirin. We also validated Micafungin's inhibition of the RSV RdRP using an in vitro transcription assay. These findings contribute to RSV drug development and hold promise for broad-spectrum antivirals targeting the non-segmented negative-sense (NNS) RNA viral polymerases, including those of rabies (RABV) and Ebola (EBOV).

13.
Curr Pharm Des ; 29(17): 1379-1389, 2023.
Article in English | MEDLINE | ID: mdl-37171005

ABSTRACT

BACKGROUND AND OBJECTIVE: Rheumatoid arthritis (RA) is an increasingly serious disease worldwide that can damage the joints and bones of sufferers. Sanmiao Pill (SMP), a classical traditional Chinese medicine (TCM) prescription, has been used for effective treatments for RA in the clinic. To comprehensively illuminate the therapeutic mechanism of SMP in the treatment of RA, the effects of SMP on biomarkers and metabolic pathways in rats with adjuvant-induced arthritis (AIA) were examined. > Methods: Sprague Dawley rats were randomly divided into two control (CC, Control) groups, two model (MM, Model) groups, a methotrexate group (MTX, 7.6 mg/kg body weight per week), and two SMP groups (San-L, 28.7 mg/kg body weight per day and San-H, 57.4 mg/kg body weight per day). Rats' body weight, paw swelling, arthritis scores, biochemical parameters, histopathology, and so on were used to evaluate the success of the model and the therapeutic effects of SMP. The metabolic techniques were used to characterize the metabolic profile and biomarkers of the serum and urine samples of rats to reveal the metabolic changes that occurred after SMP treatment. > Results: After 21 days of treatment, SMP improved weight gain, reduced the severity of paw swelling, lowered the levels of biochemical indicators (CCP-Ab, IL-6, TNF-α, RF), decreased destruction of articular cartilage and bone erosion, and protected the affected joints.Additionally, 17 and 19 potential biomarkers associated with RA were identified in the serum and urine, respectively. SMP significantly reversed 14 potential biomarkers, such as arachidonic acid, lysoPC(20:4(5Z,8Z,11Z,14Z)), L-tryptophan, 9-cis-Retinoic acid, hippuric acid, pyridoxine, and pantothenic acid. These metabolites are associated with arachidonic acid metabolism, glycerophospholipid catabolism, tryptophan metabolism, phenylalanine metabolism, vitamin B6 metabolism, etc. > Conclusion: These results indicated that RA-related biomarkers reflected the metabolic profile of AIA rats. Meanwhile, SMP could effectively treat RA mainly by reducing inflammation and regulating abnormal lipid metabolic pathways and amino acid metabolisms. It showed that metabolomics could be used to analyze the metabolic profiles involved in RA and reveal the mechanism of SMP treatment of RA.>.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Arachidonic Acid/therapeutic use , Metabolomics/methods , Arthritis, Experimental/drug therapy , Biomarkers
14.
HIV Med ; 24(1): 37-45, 2023 01.
Article in English | MEDLINE | ID: mdl-35578387

ABSTRACT

OBJECTIVES: To investigate the association of low-level viremia (LLV) with mortality among people living with HIV (PLHIV) on antiretroviral therapy (ART) in Dehong, Southwest China. METHODS: We analysed data collected from a cohort of PLHIV on ART in Dehong. PLHIV were enrolled in this cohort after they started ART, with viral load (VL) tested once a year afterwards. Each VL level was then categorized into one of the four groups: <50, 50-199, 200-999 and ≥1000 copies/ml. VL levels of 50-199 and 200-999 copies/ml were defined as LLV. The VL level for each participant was re-categorized and fitted into an extended Cox regression model as a time-varying covariate to examine the associations of VL level with all-cause and AIDS-related deaths. RESULTS: Among the included 7273 of 8762 PLHIV in this study, median age (interquartile range, IQR) was 36 (30-43) years and 59.9% were male. The patients were followed up for a median duration (IQR) of 6.2 (4.3-8.2) years. Compared with VL <50 copies/ml, LLV 200-999 copies/ml (adjusted hazard ratio [aHR] and 95% confidence interval [95% CI]: 1.56 [1.04, 2.32]) were associated with elevated risk of all-cause mortality and LLV50-199 (aHR [95% CI]: 1.00 [0.68, 1.45]) were not. Similarly, only LLV200-999 copies/ml (aHR [95% CI]: 2.37 [1.36, 4.14]) corresponded to higher risk of AIDS-related mortality. CONCLUSIONS: This study suggests that PLHIV on ART may have elevated death risks even though the viremia is suppressed at a low level. Interventions targeting PLHIV with LLV should be developed to reduce their mortality.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , Humans , Male , Adult , Female , Anti-HIV Agents/therapeutic use , Retrospective Studies , Viremia/drug therapy , Acquired Immunodeficiency Syndrome/drug therapy , Viral Load
15.
Front Bioeng Biotechnol ; 11: 1343956, 2023.
Article in English | MEDLINE | ID: mdl-38260739

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) can infect a variety of cells and cause malignant tumors. At present, the use of microRNA (miRNA) for anti-KSHV is a promising treatment strategy, but the instability and non-specific uptake of miRNA still limit its use in the treatment of KSHV. In the present study, we constructed a nano-drug delivery system employing chemical grafting and electrostatic adsorption to solve the problems of easy degradation and low cell uptake of miRNA during direct administration. This nano-drug delivery system is to graft 4-carboxyphenylboric acid (PBA) and lauric acid (LA) onto polyethylenimine (PEI) through amidation reaction, and then prepare cationic copolymer nanocarriers (LA-PEI-PBA). The drug-carrying nanocomplex LA-PEI-PBA/miR-34a-5p was formed after further electrostatic adsorption of miR-34a-5p on the carrier and could protect miR-34a-5p from nuclease and serum degradation. Modification of the drug-carrying nanocomplex LA-PEI-PBA/miR-34a-5p by targeted molecule PBA showed effective uptake, increase in the level of miR-34a-5p, and inhibition of cell proliferation and migration in KSHV-infected cells. In addition, the drug-carrying nanocomplex could also significantly reduce the expression of KSHV lytic and latent genes, achieving the purpose of anti-KSHV treatment. In conclusion, these cationic copolymer nanocarriers with PBA targeting possess potential applications in nucleic acid delivery and anti-KSHV therapy.

16.
Biochem Soc Trans ; 50(6): 1753-1762, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36382964

ABSTRACT

The nervous system is composed of a variety of neurons and glial cells with different morphology and functions. In the mammalian peripheral nervous system (PNS) or the lower vertebrate central nervous system (CNS), most neurons can regenerate extensively after axotomy, while the neurons in the mammalian CNS possess only limited regenerative ability. This heterogeneity is common within and across species. The studies about the transcriptomes after nerve injury in different animal models have revealed a series of molecular and cellular events that occurred in neurons after axotomy. However, responses of various types of neurons located in different positions of individuals were different remarkably. Thus, researchers aim to find the key factors that are conducive to regeneration, so as to provide the molecular basis for solving the regeneration difficulties after CNS injury. Here we review the heterogeneity of axonal regeneration among different cell subtypes in different animal models or the same organ, emphasizing the importance of comparative studies within and across species.


Subject(s)
Axons , Nerve Regeneration , Animals , Nerve Regeneration/physiology , Axotomy , Peripheral Nervous System , Central Nervous System , Mammals
17.
Cell Metab ; 34(6): 888-901.e5, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675799

ABSTRACT

Homeostatic thermogenesis is an essential protective feature of endotherms. However, the specific neuronal types involved in cold-induced thermogenesis remain largely unknown. Using functional magnetic resonance imaging and in situ hybridization, we screened for cold-sensitive neurons and found preprodynorphin (PDYN)-expressing cells in the dorsal medial region of the ventromedial hypothalamus (dmVMH) to be a candidate. Subsequent in vivo calcium recording showed that cold temperature activates dmVMHPdyn neurons, whereas hot temperature suppresses them. In addition, optogenetic activation of dmVMHPdyn neurons increases the brown adipose tissue and core body temperature, heart rate, and blood pressure, whereas optogenetic inhibition shows opposite effects, supporting their role in homeostatic thermogenesis. Furthermore, we found that dmVMHPdyn neurons are linked to known thermoregulatory circuits. Importantly, dmVMHPdyn neurons also show activation during mouse social interaction, and optogenetic inhibition suppresses social interaction and associated hyperthermia. Together, our study describes dual functions of dmVMHPdyn neurons that allow coordinated regulation of body temperature and social behaviors.


Subject(s)
Hyperthermia, Induced , Social Interaction , Adipose Tissue, Brown , Animals , Cold Temperature , Hypothalamus , Mice , Neurons/physiology , Thermogenesis/physiology
18.
J Orthop Surg Res ; 17(1): 280, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585631

ABSTRACT

OBJECTIVE: To investigate the distribution and influence of comminution in femoral neck fracture (FNF) patients after cannulated screw fixation (CSF). METHODS: From January 2019 to June 2020, a total of 473 patients aged 23-65 years with FNF treated by CSF were included in the present study. Based on location of the cortical comminution, FNF patients were assigned to two groups: the comminution group (anterior comminution, posterior comminution, superior comminution, inferior comminution, multiple comminutions) or the without comminution group. The incidence of postoperative complications, quality of life and functional outcomes was recorded at 1-year follow-up. RESULTS: Comminution was more likely to appear in displaced FNF patients (86.8%) compared with non-displaced FNF patients (8.9%), and the rate of comminution was closely associated with Pauwels classification (3.2% vs 53.5% vs 83.9%, P < 0.05). The incidence of osteonecrosis of the femoral head (ONFH, 11.3% vs 2.9%, P < 0.05), nonunion (7.5% vs 1.7%, P < 0.05), femoral neck shortening (21.6% vs 13.4%, P < 0.05) and internal fixation failure (11.8% vs 2.9%, P < 0.05) was significantly higher in FNF patients with comminutions, especially with multiple comminutions, than those without. Furthermore, there was a significant difference in the Harris hip score (HHS, 85.6 ± 15.6 vs 91.3 ± 10.8, P < 0.05) and EuroQol five dimensions questionnaire (EQ-5D, 0.85 ± 0.17 vs 0.91 ± 0.18, P < 0.05) between FNF patients with comminution and those without. There was no significant difference in Visual analogue scale scores (VAS, 1.46 ± 2.49 vs 1.13 ± 1.80, P > 0.05) between two groups at 1 year post-surgery. CONCLUSION: Comminution is a risk factor for postoperative complications in young- and middle-aged patients with displaced and Pauwels type III FNF who undergo CSF. This can influence the recovery of hip function, thereby impacting quality of life. Further evaluation with a more comprehensive study design, larger sample and long-term follow-up is needed.


Subject(s)
Femoral Neck Fractures , Fractures, Comminuted , Bone Screws/adverse effects , Femoral Neck Fractures/complications , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/adverse effects , Humans , Middle Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Quality of Life , Treatment Outcome
19.
PeerJ ; 10: e13233, 2022.
Article in English | MEDLINE | ID: mdl-35444864

ABSTRACT

Background: We aimed to investigate the effects of miR-34a-5p on c-fos regulation mediating the malignant behaviors of SH-SY5Y cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Methods: The KSHV-infected (SK-RG) and uninfected SH-SY5Y parent cells were compared for differentially expressed miRNAs using transcriptome sequencing. Then miR-34a-5p was upregulated in SK-RG cells by the miRNA mimics transfection. Cell proliferation ability was determined by MTT and plate clone assays. The cell cycle was assessed by flow cytometry analysis, and CDK4, CDK6, cyclin D1 levels were determined by Western blot analysis. The migration behavior was detected by wound healing and transwell assays. The protein levels of MMP2 and MMP9 were measured by Western blot analysis. The regulation of c-fos by miR-34a-5p was detected by the dual-luciferase reporter gene assay. Rescue assays were carried out by upregulating c-fos in miR-34a-5p-overexpressing SK-RG cells. KSHV DNA copy numbers and relative virus gene expressions were detected. Xenograft tumor experiments and immunohistochemistry assays were further used to detect the effects of miR-34a-5p. Results: miR-34a-5p was lower in SK-RG cells. Restoration of miR-34a-5p decreased cell proliferation and migration, leading to a G1 cell cycle arrest and down-regulation of CDK4/6, cyclin D1, MMP2, MMP9. KSHV copy number and expression of virus gene including latency-associated nuclear antigen (LANA), replication and transcription activator (RTA), open reading frame (K8.1), and KSHV G protein-coupled receptor (v-GPCR) were also reduced. Furthermore, c-fos is the target of miR-34a-5p, while enhanced c-fos weakened cellular behaviors of miR-34a-5p-overexpressing cells. Xenograft experiments and immunohistochemistry assays showed that miR-34a-5p inhibited tumor growth and virus gene expression. Conclusion: Upregulated miR-34a-5p in KSHV-infected SH-SY5Y cells suppressed cell proliferation and migration through down-regulating c-fos. miR-34a-5p was a candidate molecular drug for KSHV-infected neuronal cells.


Subject(s)
Herpesvirus 8, Human , MicroRNAs , Neuroblastoma , Humans , Cyclin D1 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , MicroRNAs/genetics , Animals
20.
Front Plant Sci ; 13: 833858, 2022.
Article in English | MEDLINE | ID: mdl-35419018

ABSTRACT

Soybean seeds contain substantial triacylglycerols and fatty acids that are prone to oxidation during storage, contributing to the dramatic deterioration of seed vigor. This study reports an ultrasonic waves treatment (UWT), which is a physical method capable of promoting the germination ability of the aged soybean seeds by regulating the antioxidant defense and gluconeogenesis. Germination test revealed that UWT significantly increased the germination rate and seedlings' establishment of the soybean seeds stored for 12 months, although insignificantly impacting the vigor of fresh (stored for 1 month) and short-term stored (for 6 months) seeds. Further biochemical analysis revealed that UWT decreased the hydrogen peroxide (H2O2), O2⋅-, and malondialdehyde contents in the aged soybean seeds during early germination. Consistently, UWT prominently elevated the activities of superoxide dismutase, catalase, and acetaldehyde dehydrogenase, and also the corresponding gene expressions. Besides, the soluble sugar content of UWT was significantly higher than that of the untreated aged seeds. Analysis of enzyme activity showed UWT significantly upregulated the activities of several key enzymes in gluconeogenesis and the transcription levels of corresponding genes. Moreover, UWT enhanced the invertase activity within aged seeds, which was responsible for catalyzing sucrose hydrolysis for forming glucose and fructose. In summary, UWT improved germination and seedlings establishment of aged soybean seeds by regulating antioxidant defense and gluconeogenesis. This study expands the application of ultrasonication in agricultural production and further clarifies the physiological and molecular mechanisms of the aged seed germination, aiming to provide theoretical and practical guidance for seed quality and safety.

SELECTION OF CITATIONS
SEARCH DETAIL
...