Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 375-380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778112

ABSTRACT

Ice surfaces are closely relevant to many physical and chemical properties, such as melting, freezing, friction, gas uptake and atmospheric reaction1-8. Despite extensive experimental and theoretical investigations9-17, the exact atomic structures of ice interfaces remain elusive owing to the vulnerable hydrogen-bonding network and the complicated premelting process. Here we realize atomic-resolution imaging of the basal (0001) surface structure of hexagonal water ice (ice Ih) by using qPlus-based cryogenic atomic force microscopy with a carbon monoxide-functionalized tip. We find that the crystalline ice-Ih surface consists of mixed Ih- and cubic (Ic)-stacking nanodomains, forming 19 × 19 periodic superstructures. Density functional theory reveals that this reconstructed surface is stabilized over the ideal ice surface mainly by minimizing the electrostatic repulsion between dangling OH bonds. Moreover, we observe that the ice surface gradually becomes disordered with increasing temperature (above 120 Kelvin), indicating the onset of the premelting process. The surface premelting occurs from the defective boundaries between the Ih and Ic domains and can be promoted by the formation of a planar local structure. These results put an end to the longstanding debate on ice surface structures and shed light on the molecular origin of ice premelting, which may lead to a paradigm shift in the understanding of ice physics and chemistry.

2.
Adv Mater ; : e2404360, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657134

ABSTRACT

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

3.
Angew Chem Int Ed Engl ; 63(22): e202403504, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38563637

ABSTRACT

The rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm-2 and high specific energy of 0.858 Wh cm-2, even at a low MnO2 loading mass of 0.5 mg cm-2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.

4.
Angew Chem Int Ed Engl ; 63(13): e202318721, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38294414

ABSTRACT

Two-dimensional (2D) layered materials demonstrate prominent advantage in regulating lithium plating/stripping behavior by confining lithium diffusion/plating within interlayer gaps. However, achieving effective interlayer confined lithium diffusion/plating without compromising the stability of bulk-structural and the solid electrolyte interphase (SEI) remains a considerable challenge. This paper presents an electrochemical scissor and lithium zipper-driven protocol for realizing interlayer confined lithium plating with pretty-low strain and volume change. In this protocol, lithium serves as a "zipper" to reunite the adjacent MXene back to MAX-like phase to markedly enhance the structural stability, and a lithium halide-rich SEI is formed by electrochemically removing the terminals of halogenated MXenes to maintain the stability and rapid lithium ions diffusion of SEI. When the Ti3 C2 I2 serves as the host for lithium plating, the average coulomb efficiency exceeds 97.0 % after 320 lithium plating/stripping cycles in conventional ester electrolyte. Furthermore, a full cell comprising of LiNi0.8 Mn0.1 Co0.1 O2 and Ti3 C2 I2 @Li exhibits a capacity retention rate of 73.4 % after 200 cycles even under high cathode mass-loading (20 mg cm-2 ) and a low negative/positive capacity ratio of 1.4. Our findings advance the understanding of interlayer confined lithium plating in 2D layered materials and provide a new direction in regulating lithium and other metal plating/stripping behaviors.

5.
Small ; 20(23): e2307292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38169091

ABSTRACT

Layered Li-rich oxide cathode materials are capable of offering high energy density due to their cumulative cationic and anionic redox mechanism during (de)lithiation process. However, the structural instability of the layered Li-rich oxide cathode materials, especially in the deeply delitiated state, results in severe capacity and voltage degradation. Considering the minimal isotropic structural evolution of disordered rock salt oxide cathode during cycling, cation-disordered nano-domains have been controllably introduced into layered Li-rich oxides by co-doping of d0-TM and alkali ions. Combining electrochemical and synchrotron-based advanced characterizations, the incorporation of the phase-compatible cation-disordered domains can not only hinder the oxygen framework collapse along the c axis of layered Li-rich cathode under high operation voltage but also promote the Mn and anionic activities as well as Li+ (de)intercalation kinetics, leading to remarkable improvement in rate capability and mitigation of capacity and voltage decay. With this unique layered/rocksalt intergrown structure, the intergrown cathode yields an ultrahigh capacity of 288.4 mAh g-1 at 0.1 C, and outstanding capacity retention of ≈90.0% with obviously suppressed voltage decay after 100 cycles at 0.5, 1, and 2 C rate. This work provides a new direction toward advanced cathode materials for next-generation Li-ion batteries.

6.
Nat Nanotechnol ; 19(4): 479-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38049594

ABSTRACT

The permeability and selectivity of biological and artificial ion channels correlate with the specific hydration structure of single ions. However, fundamental understanding of the effect of ion-ion interaction remains elusive. Here, via non-contact atomic force microscopy measurements, we demonstrate that hydrated alkali metal cations (Na+ and K+) at charged surfaces could come into close contact with each other through partial dehydration and water rearrangement processes, forming one-dimensional chain structures. We prove that the interplay at the nanoscale between the water-ion and water-water interaction can lead to an effective ion-ion attraction overcoming the ionic Coulomb repulsion. The tendency for different ions to become closely packed follows the sequence K+ > Na+ > Li+, which is attributed to their different dehydration energies and charge densities. This work highlights the key role of water molecules in prompting close packing and concerted movement of ions at charged surfaces, which may provide new insights into the mechanism of ion transport under atomic confinement.

7.
J Am Chem Soc ; 146(1): 210-217, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38037330

ABSTRACT

Water plays a crucial role in various heterogeneous catalytic reactions, but the atomic-scale characterization of how water participates in these chemical processes remains a significant challenge. Here we directly visualize the promoting role of interfacial water in the deprotonation of formic acid (FA) on a metal surface, using combined scanning tunneling microscopy and qPlus-based noncontact atomic force microscopy. We find the dissociation of FA when coadsorbed with water on the Cu(111) surface, resulting in the formation of hydronium and formate ions. Interestingly, most of the hydrated proton and formate ions exhibit a phase-separated behavior on Cu(111), in which Eigen and Zundel cations assemble into a monolayer hexagonal hydrogen-bonding (H-bonding) network, and bidentate formate ions are solvated with water and aggregate into one-dimensional chains or two-dimensional H-bonding networks. This phase-separated behavior is essential for preventing the proton transfer back from hydronium to formate and the reformation of FA. Density functional theory calculations reveal that the participation of water significantly reduces the deprotonation barrier of FA on Cu(111), in which water catalyzes the decomposition of FA through the Grotthuss proton transfer mechanism. In addition, the separate solvation of hydronium and bidentate formate ions is energetically preferred due to the enhanced interaction with the copper substrate. The promoting role of water in the deprotonation of FA is further confirmed by the temperature-programmed desorption experiment, which shows that the intensity of the H2 desorption peak significantly increases and the desorption of FA declines when water and FA coadsorbed on the Cu(111) surface.

8.
ACS Appl Mater Interfaces ; 15(47): 54559-54567, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37972385

ABSTRACT

Both layered- and rocksalt-type Li-rich cathode materials are drawing great attention due to their enormous capacity, while the individual phases have their own drawbacks, such as great volume change for the layered phase and low electronic and ionic conductivities for the rocksalt phase. Previously, we have reported the layered/rocksalt intergrown cathodes with nearly zero-strain operation, while the use of precious elements hinders their industrial applications. Herein, low-cost 3d Mn4+ ions are utilized to partially replace the expensive Ru5+ ions, to develop novel ternary Li-rich cathode material Li1+x[RuMnNi]1-xO2. The as-designed Li1.15Ru0.25Mn0.2Ni0.4O2 is revealed to have a layered/rock salt intergrown structure by neutron diffraction and transmission electron microscopy. The as-designed cathode exhibits ultrahigh lithium-ion reversibility, with 0.86 (231.1 mAh g-1) out of a total Li+ inventory of 1.15 (309.1 mAh g-1). The X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectra further demonstrate that the high Li+ storage of the intergrown cathode is enabled by leveraging cationic and anionic redox activities in charge compensation. Surprisingly, in situ X-ray diffraction shows that the intergrown cathode undergoes extremely low-strain structural evolution during the charge-discharge process. Finally, the Mn content in the intergrown cathodes is found to be tunable, providing new insights into the design of advanced cathode materials for high-energy Li-ion batteries.

9.
Small ; 19(42): e2301301, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37340577

ABSTRACT

High-capacity silicon has been regarded as one of the most promising anodes for high-energy lithium-ion batteries. However, it suffers from severe volume expansion, particle pulverization, and repeated solid electrolyte interphase (SEI) growth, which leads to rapid electrochemical failure, while the particle size also plays key role here and its effects remain elusive. In this paper, through multiple-physical, chemical, and synchrotron-based characterizations, the evolutions of the composition, structure, morphology, and surface chemistry of silicon anodes with the particle size ranging from 50 to 5 µm upon cycling are benchmarked, which greatly link to their electrochemical failure discrepancies. It is found that the nano- and micro-silicon anodes undergo similar crystal to amorphous phase transition, but quite different composition transition upon de-/lithiation; at the same time, the nano- and 1 µm-silicon samples present obviously different mechanochemical behaviors from the 5 µm-silicon sample, such as electrode crack, particle pulverization/crack as well as volume expansion; in addition, the micro-silicon samples possess much thinner SEI layer than the nano-silicon samples upon cycling, and also differences in SEI compositions. It is hoped this comprehensive study and understanding should offer critical insights into the exclusive and customized modification strategies to diverse silicon anodes ranging from nano to microscale.

10.
Natl Sci Rev ; 10(7): nwac282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266561

ABSTRACT

Relevant to broad applied fields and natural processes, interfacial ionic hydrates have been widely studied by using ultrahigh-resolution atomic force microscopy (AFM). However, the complex relationship between the AFM signal and the investigated system makes it difficult to determine the atomic structure of such a complex system from AFM images alone. Using machine learning, we achieved precise identification of the atomic structures of interfacial water/ionic hydrates based on AFM images, including the position of each atom and the orientations of water molecules. Furthermore, it was found that structure prediction of ionic hydrates can be achieved cost-effectively by transfer learning using neural network trained with easily available interfacial water data. Thus, this work provides an efficient and economical methodology that not only opens up avenues to determine atomic structures of more complex systems from AFM images, but may also help to interpret other scientific studies involving sophisticated experimental results.

11.
J Am Chem Soc ; 145(21): 11701-11709, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37195646

ABSTRACT

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (Li3YCl6, Li3HoCl6, and Li6PS5Cl), which are further verified in the xLiCl-InCl3 system. The scaling analysis on conductivity spectra allowed the decoupled influences of mobile carrier concentration and hopping rate on ionic conductivity. Although the carrier concentration varied with temperature, the change alone cannot lead to the several orders of magnitude difference in conductivity. Instead, the hopping rate and the ionic conductivity present the same trend with the temperature change. Migration entropy, which arises from lattice vibrations of the jumping atoms from the initial sites to the saddle sites, is also proven to play a significant role in fast Li+ migration. The findings suggest that the multiple dependent variables such as the Li+ hopping frequency and migration energy are also responsible for the ionic conduction behavior within SSEs.

12.
Adv Mater ; 35(8): e2209556, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36493783

ABSTRACT

Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.

13.
Phys Rev Lett ; 129(4): 046001, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939030

ABSTRACT

Two-dimensional (2D) bilayer hexagonal ice (BHI) is regarded as the first intrinsic 2D ice crystal. However, the robustness of such a structure or its derivatives against surface symmetry and corrugation is still unclear. Here, we report the formation of 2D BHI on gold surfaces with 1D corrugation, using noncontact atomic force microscopy. The hexagonal arrangement of the first wetting layer was visualized on the Au(110)-1×2 surface. Upon depositing more water molecules, the first layer would rearrange and shrink, resulting in the formation of buckled BHI. Such a buckled BHI is hydrophobic despite the appearance of dangling OH, due to the strong interlayer bonding. Furthermore, the BHI is also stable on the Au(100)-5×28 surface. This work reveals the unexpected generality of the BHI on corrugated surfaces with nonhexagonal symmetry, thus shedding new light on the microscopic understandings of the low-dimensional ice formation on solid surfaces or under confinement.

14.
Science ; 377(6603): 315-319, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857595

ABSTRACT

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).

15.
Front Chem ; 9: 745446, 2021.
Article in English | MEDLINE | ID: mdl-34631666

ABSTRACT

Interfacial water is closely related to many core scientific and technological issues, covering a broad range of fields, such as material science, geochemistry, electrochemistry and biology. The understanding of the structure and dynamics of interfacial water is the basis of dealing with a series of issues in science and technology. In recent years, atomic force microscopy (AFM) with ultrahigh resolution has become a very powerful option for the understanding of the complex structural and dynamic properties of interfacial water on solid surfaces. In this perspective, we provide an overview of the application of AFM in the study of two dimensional (2D) or three dimensional (3D) interfacial water, and present the prospect and challenges of the AFM-related techniques in experiments and simulations, in order to gain a better understanding of the physicochemical properties of interfacial water.

16.
ACS Appl Mater Interfaces ; 13(21): 24925-24936, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34015912

ABSTRACT

Ni-rich layered cathodes suffer detrimental structural changes due to irreversible phase transformation (IPT). Precisely surface structural reconstruction through foreign element doping is a potential method to alleviate IPT propagation. The structure of surface reconstructed layer is greatly determined by the foreign element content and species. Herein, small doses of Ti and Al were co-substituted in LiNi0.92Co0.08O2 to synergistically regulate the surface reductive Ni distribution, consequently constructing thin rock salt phase at the particle surface. This homogeneous rock salt phase combined with the strong Ti-O and Al-O bonds generated a reversible H2-H3 phase transition and further eliminated IPT propagation. Moreover, the suppressed IPT propagation converted the two-phase (H2 and H3) coexistence to a quasi-single-phase transition. This eliminated the strong internal strains caused by a significant lattice mismatch. The Ti and Al co-substituted LiNi0.92Co0.08O2 exhibited outstanding capacity retention and excellent structural stability. Similar improvements were observed with W or Zr and Al cosubstitution in Ni-rich layered cathodes. This study proposes a universal method for comprehensive improvement of structural stability based on the synergistic effect of dual-element cosubstitution in Ni-rich layered oxide cathodes, which is being explored for production of high-cycle-stability lithium-ion batteries.

17.
ACS Appl Mater Interfaces ; 13(5): 6286-6297, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33504149

ABSTRACT

The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid-electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.

18.
Nature ; 586(7829): 390-394, 2020 10.
Article in English | MEDLINE | ID: mdl-33057223

ABSTRACT

Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1-3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4-12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.

19.
J Chem Phys ; 152(23): 234301, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32571057

ABSTRACT

The hydrogen-bonding networks of water have strong intra- and intermolecular vibrational coupling which influences the energy dissipation and proton transfer in water. Disentangling and quantitative characterization of different coupling effects in water at a single-molecular level still remains a great challenge. Using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on low-temperature scanning tunneling microscopy, we report the direct quantitative assessment of the intermolecular coupling constants of the OH-stretch vibrational bands of an isolated water tetramer adsorbed on a Au(111)-supported NaCl(001) bilayer film. This is achieved by distinguishing various coupled modes of the H-bonded O-H stretching vibrations through tip-height dependent IET spectra. In contrast, such vibrational coupling is negligible in the half-deuterated water tetramer owing to the large energy mismatch between the OH and OD stretching modes. Not only do these findings advance our understanding on the effects of local environment on the intermolecular vibrational coupling in water, but also open up a new route for vibrational spectroscopic studies of extended H-bonded network at the single-molecular level.

20.
Nature ; 577(7788): 60-63, 2020 01.
Article in English | MEDLINE | ID: mdl-31894149

ABSTRACT

The formation and growth of water-ice layers on surfaces and of low-dimensional ice under confinement are frequent occurrences1-4. This is exemplified by the extensive reporting of two-dimensional (2D) ice on metals5-11, insulating surfaces12-16, graphite and graphene17,18 and under strong confinement14,19-22. Although structured water adlayers and 2D ice have been imaged, capturing the metastable or intermediate edge structures involved in the 2D ice growth, which could reveal the underlying growth mechanisms, is extremely challenging, owing to the fragility and short lifetime of those edge structures. Here we show that noncontact atomic-force microscopy with a CO-terminated tip (used previously to image interfacial water with minimal perturbation)12, enables real-space imaging of the edge structures of 2D bilayer hexagonal ice grown on a Au(111) surface. We find that armchair-type edges coexist with the zigzag edges usually observed in 2D hexagonal crystals, and freeze these samples during growth to identify the intermediate edge structures. Combined with simulations, these experiments enable us to reconstruct the growth processes that, in the case of the zigzag edge, involve the addition of water molecules to the existing edge and a collective bridging mechanism. Armchair edge growth, by contrast, involves local seeding and edge reconstruction and thus contrasts with conventional views regarding the growth of bilayer hexagonal ices and 2D hexagonal matter in general.


Subject(s)
Ice , Microscopy, Scanning Tunneling , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL
...