Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762635

ABSTRACT

Zinc (Zn) deficiency is a common limiting factor in agricultural soils, which leads to significant reduction in both the yield and nutritional quality of agricultural produce. Exploring the quantitative trait loci (QTL) for shoot and grain Zn accumulation would help to develop new barley cultivars with greater Zn accumulation efficiency. In this study, two glasshouse experiments were conducted by growing plants under adequate and low Zn supply. From the preliminary screening of ten barley cultivars, Sahara (0.05 mg/pot) and Yerong (0.06 mg/pot) showed the lowest change in shoot Zn accumulation, while Franklin (0.16 mg/pot) had the highest change due to changes in Zn supply for plant growth. Therefore, the double haploid (DH) population derived from Yerong × Franklin was selected to identify QTL for shoot mineral accumulation and biomass production. A major QTL hotspot was detected on chromosome 2H between 31.91 and 73.12 cM encoding genes for regulating shoot mineral accumulations of Zn, Fe, Ca, K and P, and the biomass. Further investigation demonstrated 16 potential candidate genes for mineral accumulation, in addition to a single candidate gene for shoot biomass in the identified QTL region. This study provides a useful resource for enhancing nutritional quality and yield potential in future barley breeding programs.


Subject(s)
Hordeum , Malnutrition , Zinc , Hordeum/genetics , Quantitative Trait Loci , Biomass , Plant Breeding , Minerals
2.
Plant Physiol Biochem ; 202: 107906, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37562203

ABSTRACT

Aluminum (Al) toxcity is considered to be the primary factor limiting crop productivity in acidic soil. Many studies indicate that long non-coding RNAs (lncRNAs) fulfil a crucial role in plant growth and responses to different abiotic stress. However, identification and characterization of lncRNAs responsive to Al stress at a genome-wide level in olive tree is still lacking. Here, we performed comparative analysis on lncRNA transcriptome between Zhonglan (an Al-tolerant genotype) and Frantoio selezione (Al-sensitive) responding to Al exposure. A total of 19,498 novel lncRNAs were identified from both genotypes, and 6900 lncRNA-target pairs were identified as cis-acting and 2311 supposed to be trans-acting. Among them, 2076 lncRNAs were appraised as Al tolerance-associated lncRNAs due to their distinctly genotype-specific expression profiles under Al exposure. Target prediction and functional analyses revealed several key lncRNAs are related to genes encoding pectinesterases, xyloglucan endotransglucosylase/hydrolase, WRKY and MYB transcription factors, which mainly participate in the modification of cell wall for Al tolerance. Furthermore, gene co-expression network analysis showed 8 lncRNA-mRNA-miRNA modules participate in transcriptional regulation of downstream Al resistant genes. Our findings increased our understanding about the function of lncRNAs in responding to Al stress in olive and identified potential promising lncRNAs for further investigation.


Subject(s)
Olea , RNA, Long Noncoding , Olea/genetics , Olea/metabolism , RNA, Long Noncoding/genetics , Aluminum/toxicity , Aluminum/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Genotype
3.
Ecotoxicol Environ Saf ; 256: 114881, 2023 May.
Article in English | MEDLINE | ID: mdl-37030049

ABSTRACT

Soil cadmium (Cd) contamination is a global environmental and food safety production issue. microRNAs (miRNAs) are proven to be involved in plant growth and development, and abiotic/biotic stress response, but their role in Cd tolerance is largely unknown in maize. To understand the genetic basis of Cd tolerance, two maize genotypes differing in Cd tolerance (L42, a sensitive genotype and L63, a tolerant genotype) were selected, and miRNA sequencing was carried out at nine-day-old seedlings exposed to 24 h Cd stress (5 µM CdCl2). A total of 151 differentially expressed miRNAs were identified, including 20 known miRNAs and 131 novel miRNAs. The results revealed that 90 and 22 miRNAs were up-regulated and down-regulated by Cd in Cd-tolerant genotype L63, and there were 23 and 43 miRNAs in Cd-sensitive genotype L42, respectively. Twenty-six miRNAs were up-regulated in L42 and unchanged or down-regulated in L63, or unchanged in L42 and down-regulated in L63. There were 108 miRNAs that were up-regulated in L63 and unchanged or down-regulated in L42, or unchanged in L63 and down-regulated in L42. Their target genes were enriched mainly in peroxisomes, glutathione (GSH) metabolism, ABC transporter, and ubiquitin-protease system. Among them, target genes involved in the peroxisome pathway and GSH metabolism might play key roles in Cd tolerance in L63. Besides, several ABC transporters which might involve in Cd uptake and transport were identified. The differentially expressed miRNAs or target genes could be used for breeding low grain Cd accumulation and high Cd tolerance cultivars in maize.


Subject(s)
MicroRNAs , Transcriptome , MicroRNAs/metabolism , Cadmium/metabolism , Zea mays/metabolism , Plant Breeding , Genotype , Gene Expression Regulation, Plant , Stress, Physiological/genetics
4.
Plants (Basel) ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903838

ABSTRACT

Aluminum toxicity (Al) is one of the major constraints to crop production in acidic soils. MicroRNAs (miRNAs) have emerged as key regulatory molecules at post-transcriptional levels, playing crucial roles in modulating various stress responses in plants. However, miRNAs and their target genes conferring Al tolerance are poorly studied in olive (Olea europaea L.). Here, genome-wide expression changes in miRNAs of the roots from two contrasting olive genotypes Zhonglan (ZL, Al-tolerant) and Frantoio selezione (FS, Al-sensitive) were investigated by high-throughput sequencing approaches. A total of 352 miRNAs were discovered in our dataset, consisting of 196 conserved miRNAs and 156 novel miRNAs. Comparative analyses showed 11 miRNAs have significantly different expression patterns in response to Al stress between ZL and FS. In silico prediction identified 10 putative target gene of these miRNAs, including MYB transcription factors, homeobox-leucine zipper (HD-Zip) proteins, auxin response factors (ARF), ATP-binding cassette (ABC) transporters and potassium efflux antiporter. Further functional classification and enrichment analysis revealed these Al-tolerance associated miRNA-mRNA pairs are mainly involved in transcriptional regulation, hormone signaling, transportation and metabolism. These findings provide new information and perspectives into the regulatory roles of miRNAs and their target for enhancing Al tolerance in olives.

5.
Chemosphere ; 317: 137885, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682639

ABSTRACT

Aluminum (Al) toxicity is a major threat to the productivity and quality of wheat on acid soil. Identifying novel Al tolerance genes is crucial for breeders to pyramid different tolerance mechanisms thus leading to greater Al tolerance. We aim to identify novel quantitative trait loci (QTL) and key candidate genes associated with Al tolerance in wheat. Herein, we investigated the genotypic variation in Al tolerance among 334 wheat varieties using an acid soil assay. Genome-wide association study (GWAS) and transcriptome were carried out to identify key genes for Al tolerance. GWAS identified several QTL associated with acid soil tolerance including one major QTL on chromosome 1A, in addition to the QTL on 4D where TaALMT1 is located. The four significant markers around the newly identified QTL explained 27.2% of the phenotypic variation. With the existence of reported markers for TaALMT1, more than 97% of the genotypes showed tolerance to Al. For those genotypes with the existence of the novel QTL on 1A but without TaALMT1, more than 90% of genotypes showed medium or high tolerance to Al, confirming the existence of the Al tolerance gene(s) on chromosome 1A. By combining GWAS and RNA-seq analysis, we identified 11 candidate genes associated with Al tolerance. The results provide new insights into the genetic basis of Al tolerance in wheat. The identified genes can be used for the breeding of Al tolerant accessions.


Subject(s)
Genome-Wide Association Study , Triticum , Chromosome Mapping , Triticum/genetics , Aluminum/toxicity , Transcriptome , Plant Breeding , Soil , Phenotype
6.
iScience ; 25(12): 105484, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36404928

ABSTRACT

Cadmium (Cd) pollution in soil has become a major environmental issue worldwide. However, the underlying molecular mechanism of low grain-Cd accumulation (GCA) in maize is still largely unknown. Herein, we report the mechanistic basis for low GCA in maize by a multiomics approach. The low GCA genotype L63 showed normal vacuolar formation and a lower capacity of xylem loading of Cd than the high-accumulator L42 under Cd stress. Transcriptomic sequencing identified 84 low-GCA-associated genes which are mainly involved in the S-adenosylmethionine (SAM) cycle, metal transport, and vacuolar sequestration. A metabolome analysis revealed that L63 plants had a more active SAM cycle and a greater capacity for terpenoid synthesis and phenylalanine metabolism than L42. Combining the analysis of transcriptome and metabolome characterized several genes as key genes involved in the determination of Cd accumulation. Our study identifies a mechanistic basis for low Cd accumulation in maize grains and provides candidate genes for genetic improvement of crops.

7.
Environ Sci Pollut Res Int ; 29(14): 20721-20730, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34741735

ABSTRACT

Soil cadmium (Cd) contamination poses adverse impacts on crop yield and quality. Maize is a widely cultivated cereal throughout the world. In this study, field and hydroponic experiments were conducted to investigate the genotypic difference in Cd accumulation and tolerance in maize. There were significant genotypic differences in grain Cd concentrations among 95 genotypes. From these 95 genotypes, L42 which showed a higher grain Cd concentration and L63 which showed a lower grain Cd concentration was selected for further study. Under Cd stress, L63 showed much less reduction in plant growth than L42 compared with the control. Seedlings of L63 recorded higher Cd concentration in roots, but lower in shoots L42, indicating that the low grain Cd concentration in L63 is mainly due to the low rate of transportation of Cd from roots to shoots. Most Cd accumulated in epidermis and xylem vessels of L63, while the green fluorescent was found across almost the entire cross-section of root in L42. Obvious ultrastructural damage was observed in L42 under Cd stress, especially in mesophyll cells, while L63 was less affected. These findings could contribute to developing low Cd accumulation and high tolerance maize cultivars.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Edible Grain/chemistry , Genotype , Plant Roots/chemistry , Soil Pollutants/analysis , Zea mays
8.
Theor Appl Genet ; 135(2): 709-721, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797396

ABSTRACT

Soil salinity is a major threat to crop productivity and quality worldwide. In order to reduce the negative effects of salinity stress, it is important to understand the genetic basis of salinity tolerance. Identifying new salinity tolerance QTL or genes is crucial for breeders to pyramid different tolerance mechanisms to improve crop adaptability to salinity. Being one of the major cereal crops, wheat is known as a salt-sensitive glycophyte and subject to substantial yield losses when grown in the presence of salt. In this study, both pot and tank experiments were conducted to investigate the genotypic variation present in 328 wheat varieties in their salinity tolerance at the vegetative stage. A Genome-Wide Association Studies (GWAS) were carried out to identify QTL conferring salinity tolerance through a mixed linear model. Six, five and eight significant marker-trait associations (MTAs) were identified from pot experiments, tank experiments and average damage scores, respectively. These markers are located on the wheat chromosomes 1B, 2B, 2D, 3A, 4B, and 5A. These tolerance alleles were additive in their effects and, when combined, increased tolerance to salinity. Candidate genes identified in these QTL regions encoded a diverse class of proteins involved in salinity tolerance in plants. A Na+/H+ exchanger and a potassium transporter on chromosome 5A (IWB30519) will be of a potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection programs. Some useful genotypes, which showed consistent tolerance in different trials, can also be effectively used in breeding programs.


Subject(s)
Genome-Wide Association Study , Salt Tolerance , Genomics , Plant Breeding , Quantitative Trait Loci , Salinity , Salt Tolerance/genetics , Triticum/genetics
9.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884904

ABSTRACT

Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.


Subject(s)
Antioxidants/metabolism , Hordeum/physiology , Plant Proteins/genetics , Potassium/metabolism , Chlorophyll/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Genotype , Hordeum/drug effects , Hordeum/genetics , Lipid Peroxidation/drug effects , Osmoregulation/drug effects , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Polyethylene Glycols/adverse effects , Secondary Metabolism/drug effects , Sodium/metabolism , Tibet
10.
Int J Mol Sci ; 22(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34830438

ABSTRACT

Salinity is a serious environmental issue. It has a substantial effect on crop yield, as many crop species are sensitive to salinity due to climate change, and it impact is continuing to increase. Plant microRNAs (miRNAs) contribute to salinity stress response in bread wheat. However, the underlying molecular mechanisms by which miRNAs confer salt tolerance in wheat are unclear. We conducted a genome-wide discovery study using Illumina high throughput sequencing and comprehensive in silico analysis to obtain insight into the underlying mechanisms by which small RNAs confer tolerance to salinity in roots of two contrasting wheat cvv., namely Suntop (salt-tolerant) and Sunmate (salt-sensitive). A total of 191 microRNAs were identified in both cultivars, consisting of 110 known miRNAs and 81 novel miRNAs; 181 miRNAs were shared between the two cultivars. The known miRNAs belonged to 35 families consisted of 23 conserved and 12 unique families. Salinity stress induced 43 and 75 miRNAs in Suntop and Sunmate, respectively. Among them, 14 and 29 known and novel miRNAs were expressed in Suntop and 37 and 38 in Sunmate. In silico analysis revealed 861 putative target mRNAs for the 75 known miRNAs and 52 putative target mRNAs for the 15 candidate novel miRNAs. Furthermore, seven miRNAs including tae-miR156, tae-miR160, tae-miR171a-b, tae-miR319, tae-miR159a-b, tae-miR9657 and novel-mir59 that regulate auxin responsive-factor, SPL, SCL6, PCF5, R2R3 MYB, and CBL-CIPK, respectively, were predicted to contribute to salt tolerance in Suntop. This information helps further our understanding of how the molecular mechanisms of salt tolerance are mediated by miRNAs and may facilitate the genetic improvement of wheat cultivars.


Subject(s)
Genome, Plant/genetics , Plant Proteins/genetics , Salt Stress/genetics , Triticum/genetics , Gene Expression Regulation, Plant/genetics , High-Throughput Nucleotide Sequencing , RNA, Plant/genetics , Salinity , Salt Tolerance/genetics , Triticum/physiology
11.
Plants (Basel) ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419127

ABSTRACT

Cadmium (Cd) is one of the major heavy metal pollutants in the environment and imposes severe limitations on crop growth and production. Glutathione (GSH) plays an important role in plant Cd tolerance which is able to scavenge stresses-induced reactive oxygen species (ROS) and is involved in the biosynthesis of phytochelatins (PCs). Our previous study revealed that Cd stress affects maize growth, and the GSH treatment could relieve Cd stress in maize seedlings. In this study, we attempted to characterize the metabolomics changes in maize leaves and roots under Cd stress and exogenous GSH conditions. We identified 145 and 133 metabolites in the leaves and roots, respectively. Cd stress decreased the tricarboxylic acid cycle (TCA cycle) metabolism and increased the amino acid contents in the leaves, while it decreased the amino acid contents, increased the TCA cycle metabolism, the sugar contents, and shikimic acid metabolism in the roots. On the other hand, exogenous GSH increased the GSH content, changed the production of metabolites related to antioxidant systems (such as ascorbic acid-related metabolites and flavonoid-related metabolites), and alleviated lipid peroxidation, thereby alleviating the toxic effect of Cd stress on maize. These findings support the idea that GSH alleviates Cd-induced stress in maize and may help to elucidate the mechanism governing Cd-induced stress and the GSH-driven alleviation effect.

12.
J Hazard Mater ; 401: 123371, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32763683

ABSTRACT

Aluminum (Al) stress in acid soils is one of the major factors limiting crop productivity. ATP binding cassette (ABC) transporters have numerous roles in plants, but the link between ABCB protein subfamily and plant Al tolerance is still elusive. Here, we identified and characterized a novel tonoplast HvABCB25 in barley root cells. HvABCB25 was up-regulated in the transcriptome of Al-tolerant wild barley XZ16 under Al treatment and was highly Al-inducible in root tips. ABCB25 is originated from Streptophyte algae and evolutionarily conserved in land plants. Moreover, silencing HvABCB25 in Al-tolerant XZ16 led to significant suppression of Al tolerance as indicated by significantly reduced root growth and enhanced Al accumulation in root cells. Conversely, HvABCB25-overexpressed plants and Golden Promise showed similar Al content in whole roots and in cell sap, but the overexpression lines exhibited significantly higher Al-induced relative root growth and dry weight. Al florescence in cytosol of root cells were significantly less in overexpression lines than that in GP. These results indicated that overexpressing HvABCB25 may be responsible for Al detoxification via vacuolar Al sequestration in barley roots, providing useful insight into the genetic basis for a new Al detoxification mechanism towards plant Al tolerance in acid soils.


Subject(s)
Hordeum , ATP-Binding Cassette Transporters , Aluminum/metabolism , Aluminum/toxicity , Gene Expression Regulation, Plant , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Vacuoles/metabolism
13.
J Exp Bot ; 71(20): 6587-6600, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32766860

ABSTRACT

Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.


Subject(s)
Hordeum , Droughts , Gene Expression Regulation, Plant , Homeostasis , Hordeum/genetics , Hordeum/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species , Stress, Physiological
14.
Cells ; 9(6)2020 06 23.
Article in English | MEDLINE | ID: mdl-32585935

ABSTRACT

Drought and salinity are two of the most frequently co-occurring abiotic stresses. Despite recent advances in the elucidation of the effects of these stresses individually during the vegetative stage of plants, significant gaps exist in our understanding of the combined effects of these two frequently co-occurring stresses. Here, Tibetan wild barley XZ5 (drought tolerant), XZ16 (salt tolerant), and cultivated barley cv. CM72 (salt tolerant) were subjected to drought (D), salinity (S), or a combination of both treatments (D+S). Protein synthesis is one of the primary activities of the green part of the plant. Therefore, leaf tissue is an important parameter to evaluate drought and salinity stress conditions. Sixty differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) and classified into 9 biological processes based on Gene Ontology annotation. Among them, 21 proteins were found to be expressed under drought or salinity alone; however, under D+S, 7 proteins, including S-adenosylmethionine synthetase 3 (SAMS3), were exclusively upregulated in drought-tolerant XZ5 but not in CM72. HvSAMS3 carries both N-terminal and central domains compared with Arabidopsis and activates the expression of several ethylene (ET)-responsive transcription factors. HvSAMS3 is mainly expressed in the roots and stems, and HvSAMS3 is a secretory protein located in the cell membrane and cytoplasm. Barley stripe mosaic virus-based virus-induced gene silencing (BSMV-VIGS) of HvSAMS3 in XZ5 severely compromised its tolerance to D+S and significantly reduced plant growth and K+ uptake. The reduced tolerance to the combined stress was associated with the inhibition of polyamines such as spermidine and spermine, polyamine oxidase, ethylene, biotin, and antioxidant enzyme activities. Furthermore, the exogenous application of ethylene and biotin improved the tolerance to D+S in BSMV-VIGS:HvSAMS3-inoculated plants. Our findings highlight the significance of HvSAMS3 in the tolerance to D+S in XZ5.


Subject(s)
Hordeum/genetics , Methionine Adenosyltransferase/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Droughts , Hordeum/enzymology , Methionine Adenosyltransferase/metabolism , Plant Proteins/metabolism , Salinity , Tibet
15.
Plants (Basel) ; 9(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316535

ABSTRACT

To elucidate inter-specific similarity and difference of tolerance mechanism against salinity stress between wheat and barley, high tolerant wheat cv. Suntop and sensitive cv. Sunmate and tolerant barley cv. CM72 were hydroponically grown in a greenhouse with 100 mM NaCl. Glutathione, secondary metabolites, and genes associated with Na+ transport, defense, and detoxification were examined to discriminate the species/cultivar difference in response to salinity stress. Suntop and CM72 displayed damage to a lesser extent than in Sunmate. Compared to Sunmate, both Suntop and CM72 recorded lower electrolyte leakage and reactive oxygen species (ROS) production, higher leaf relative water content, and higher activity of PAL (phenylalanine ammonia-lyase), CAD (cinnamyl alcohol dehydrogenase), PPO (polyphenol oxidase), SKDH (shikimate dehydrogenase), and more abundance of their mRNA under salinity stress. The expression of HKT1, HKT2, salt overly sensitive (SOS)1, AKT1, and NHX1 was upregulated in CM72 and Suntop, while downregulated in Sunmate. The transcription factor WRKY 10 was significantly induced in Suntop but suppressed in CM72 and Sunmate. Higher oxidized glutathione (GSSG) content was accumulated in cv. CM72 and Sunmate, but increased glutathione (GSH) content and the ratio of GSH/GSSG were observed in leaves and roots of Suntop under salinity stress. In conclusion, glutathione homeostasis and upregulation of the TaWRKY10 transcription factor played a more important role in wheat salt-tolerant cv. Suntop, which was different from barley cv. CM72 tolerance to salinity stress. This new finding could help in developing salinity tolerance in wheat and barley cultivars.

16.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316632

ABSTRACT

Drought stress is a major obstacle to agricultural production. Tibetan wild barley with rich genetic diversity is useful for drought-tolerant improvement of cereals. MicroRNAs (miRNAs) play critical roles in controlling gene expression in response to various environment perturbations in plants. However, the genome-wide expression profiles of miRNAs and their targets in response to drought stress are largely unknown in wild barley. In this study, a polyethylene glycol (PEG) induced drought stress hydroponic experiment was performed, and the expression profiles of miRNAs from the roots of two contrasting Tibetan wild barley genotypes XZ5 (drought-tolerant) and XZ54 (drought-sensitive), and one cultivated barley Tadmor (drought-tolerant) generated by high-throughput sequencing were compared. There were 69 conserved miRNAs and 1574 novel miRNAs in the dataset of three genotypes under control and drought conditions. Among them, seven conserved miRNAs and 36 novel miRNAs showed significantly genotype-specific expression patterns in response to drought stress. And 12 miRNAs were further regarded as drought tolerant associated miRNAs in XZ5, which mostly participate in gene expression, metabolism, signaling and transportation, suggesting that they and their target genes play important roles in plant drought tolerance. This is the first comparation study on the miRNA transcriptome in the roots of two Tibetan wild barley genotypes differing in drought tolerance and one drought tolerant cultivar in response to PEG treatment. Further results revealed the candidate drought tolerant miRNAs and target genes in the miRNA regulation mechanism in wild barley under drought stress. Our findings provide valuable understandings for the functional characterization of miRNAs in drought tolerance.


Subject(s)
Exome Sequencing/methods , Hordeum/growth & development , MicroRNAs/genetics , Polyethylene Glycols/adverse effects , Droughts , Gene Expression Regulation, Plant/drug effects , Genotype , High-Throughput Nucleotide Sequencing , Hordeum/classification , Hordeum/drug effects , Hordeum/genetics , MicroRNAs/chemistry , Models, Molecular , Nucleic Acid Conformation , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , RNA, Plant/genetics
17.
Chemosphere ; 240: 124907, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31550592

ABSTRACT

Deciphering the mechanism of Cd accumulation in crops is imperative for minimizing soil-to-plant transfer of Cd to improve safe food production. Hydroponic experiments were performed examining Cd accumulation, growth performance and protein characteristics of two rice genotypes, Xiushui817 and Zheda821, with low and high grain Cd accumulation, respectively, under Cd stress and in the presence of Si. Xiushui817 had lower root-to-shoot Cd translocation and was more sensitive to Cd stress than Zheda821. Si reduced the shoot Cd content in both genotypes but more efficacy in Zheda821. Tandem mass tags (TMT)-based proteomic analysis identified 25 proteins associated with low grain Cd accumulation, including vacuolar H+-pyrophosphatase 1 (OVP1) that was up-regulated after Si addition in Zheda821. The sequence comparison of OVP1 showed one nucleotide difference in Xiushui817 relative to Zheda821 resulting in one amino acid. Overexpression of OVP1 reduced shoot Cd concentration and improved the growth of rice compared with WT under both control and Cd treatment. The results highlight the significant roles of OVP1 in both Cd accumulation and the Si-induced Cd reduction in rice. Our findings provide valuable insights into the molecular mechanism of low Cd accumulation and Si-induced decrease in Cd accumulation in rice. OVP1 could be used for transgenic overexpression in rice or other cereals for safe food production.


Subject(s)
Cadmium/pharmacokinetics , Oryza/drug effects , Plant Proteins/metabolism , Pyrophosphatases/metabolism , Silicon/pharmacology , Cadmium/toxicity , Gene Expression Regulation, Plant , Genotype , Hydroponics , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Shoots/drug effects , Plant Shoots/metabolism , Plants, Genetically Modified , Proteomics/methods , Pyrophosphatases/genetics , Soil Pollutants/pharmacokinetics
18.
Int J Mol Sci ; 20(7)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965578

ABSTRACT

The identification of gene(s) that are involved in Cd accumulation/tolerance is vital in developing crop cultivars with low Cd accumulation. We developed a doubled haploid (DH) population that was derived from a cross of Suyinmai 2 (Cd-sensitive) × Weisuobuzhi (Cd-tolerant) to conduct quantitative trait loci (QTL) mapping studies. We assessed chlorophyll content, traits that are associated with development, metal concentration, and antioxidative enzyme activity in DH population lines and parents under control and Cd stress conditions. A single QTL, designated as qShCd7H, was identified on chromosome 7H that was linked to shoot Cd concentration; qShCd7H explained 17% of the phenotypic variation. Comparative genomics, map-based cloning, and gene silencing were used in isolation, cloning, and functional characterization of the candidate gene. A novel gene HvPAA1, being related to shoot Cd concentration, was identified from qShCd7H. Sequence comparison indicated that HvPAA1 carried seven domains with an N-glycosylation motif. HvPAA1 is predominantly expressed in shoots. Subcellular localization verified that HvPAA1 is located in plasma membrane. The silencing of HvPAA1 resulted in growth inhibition, greater Cd accumulation, and a significant decrease in Cd tolerance. We conclude HvPAA1 is a novel plasma membrane-localized ATPase that contributes to Cd tolerance and accumulation in barley. The results provide us with new insights that may aid in the screening and development of Cd-tolerant and low-Cd-accumulation crops.


Subject(s)
Adenosine Triphosphatases/metabolism , Cadmium/metabolism , Hordeum/metabolism , Adenosine Triphosphatases/genetics , Chromosomes, Plant/genetics , Genetic Linkage , Haploidy , Phenotype , Quantitative Trait Loci/genetics
19.
Int J Mol Sci ; 20(3)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30759829

ABSTRACT

Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.


Subject(s)
Hordeum/genetics , Quantitative Trait Loci/genetics , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Biomarkers/metabolism , Droughts , Genetic Variation/genetics , Genome-Wide Association Study/methods , Genotype , Linkage Disequilibrium/genetics , Phenotype , Plant Breeding/methods , Tibet
20.
Physiol Plant ; 165(2): 134-143, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29635753

ABSTRACT

The combined drought and salinity stresses pose a serious challenge for crop production, but the physiological mechanisms behind the stresses responses in wheat remains poorly understood. Greenhouse pot experiment was performed to study differences in genotype response to the single and combined (D + S) stresses of drought (4% soil moisture, D) and salinity (100 mM NaCl, S) using two wheat genotypes: Jimai22 (salt tolerant) and Yangmai20 (salt-sensitive). Results showed that salinity, drought and/or D + S severely reduces plant growth, biomass and net photosynthetic rate, with a greater effect observed in Yangmai20 than Jimai22. A notable improvement in water use efficiency (WUE) by 239, 77 and 103% under drought, salinity and D + S, respectively, was observed in Jimai22. Moreover, Jimai22 recorded higher root K+ concentration in drought and salinity stressed condition and shoot K+ under salinity alone than that of Yangmai20. Jimai22 showed lower increase in malondialdehyde (MDA) accumulation, but higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and guaicol peroxidase (POD, EC 1.11.1.7), under single and combined stresses, and catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) under single stress. Our results suggest that high tolerance of Jimai22 in both drought and D + S stresses is closely associated with larger root length, higher Fv/Fm and less MDA contents and improved capacity of SOD and POD. Moreover, under drought Jimai22 tolerance is firmly related to higher root K+ concentration level and low level of Na+ , high-net photosynthetic rate and WUE as well as increased CAT and APX activities to scavenge reactive oxygen species.


Subject(s)
Droughts , Salinity , Salt Tolerance/genetics , Stress, Physiological/genetics , Triticum/genetics , Triticum/physiology , Antioxidants/metabolism , Biomass , Chlorophyll/metabolism , Fluorescence , Genotype , Malondialdehyde/metabolism , Photosynthesis , Plant Proteins/metabolism , Plant Stomata/physiology , Potassium/metabolism , Proline/metabolism , Sodium/metabolism , Solubility , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...