Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 939: 173437, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38796024

ABSTRACT

Rapid advancement of the rural digital economy has intensified the demand for leveraging digital tools to foster low-carbon and sustainable agricultural practices, garnering widespread academic and bureaucratic attention. Understanding how the rural digital economy influences agricultural carbon emissions is crucial for unlocking emission reduction potential, facilitating a transition towards sustainable energy usage in rural areas, and nurturing green agricultural development. In this study, we employ the entropy method, a spatial Durbin model, and a panel threshold model to assess the impact of the rural digital economy on agricultural carbon emissions across each province in China from 2010 to 2022. Additionally, we delve into the mechanism through which the rural digital economy facilitates agricultural carbon reduction, particularly in terms of "agricultural socialized services". Our findings reveal several key insights. Firstly, the rural digital economy contributes significantly to reducing agricultural carbon emission intensity. Secondly, there is a non-linear relationship between the rural digital economy and agricultural carbon emissions. With the development of rural digital economy showing a marginal decreasing trend, there is an obvious threshold effect. Thirdly, enhancing agricultural socialized services through the rural digital economy can curb agricultural carbon emissions. Lastly, the carbon reduction effect of the rural digital economy is more significant in more economically developed areas, areas with moderate levels of economic development, and areas with low technological investment; implementation of a "zero growth" policy for fertilizers strengthens this carbon reduction effect. This study sheds light on the mechanisms and effects of agricultural carbon emissions, offering quantitative evidence and theoretical support for the transition towards low-carbon and sustainable agricultural development.

2.
RSC Adv ; 13(21): 14171-14180, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180023

ABSTRACT

In this study, Mg/Al layered double hydroxide (LDH) composite coatings were prepared on the surface of anodized 1060 aluminum alloy by an in situ growth method, and then the vanadate anions were embedded in the interlayer corridor of LDH by an ion exchange process. The morphology, structure and composition of the composite coatings were investigated using scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. Ball-and-disk friction wear experiments were carried out to measure the coefficient of friction, the amount of wear, and the morphology of the worn surface. The corrosion resistance of the coating is studied using dynamic potential polarisation (Tafel) and electrochemical impedance spectroscopy (EIS). The results showed that the LDH composite coating with unique layered nanostructure as a solid lubricating film can effectively improve the friction and wear reduction performance of the metal substrate. Chemical modification treatment by embedding vanadate anions in the LDH coating leads to the change of LDH layer spacing and the increase of interlayer channels, resulting in the best friction and wear reduction and corrosion resistance of the LDH coating. Finally, the mechanism of hydrotalcite coating as a solid lubricating film for friction and wear reduction is proposed.

3.
Sci Rep ; 11(1): 5922, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723275

ABSTRACT

Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.


Subject(s)
Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gossypol/pharmacology , Biomarkers , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/genetics , Colonic Neoplasms/genetics , Cottonseed Oil/chemistry , Dose-Response Relationship, Drug , Down-Regulation , Genes, Reporter , Gossypol/chemistry , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
In Vitro Cell Dev Biol Anim ; 49(10): 759-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23949780

ABSTRACT

Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.


Subject(s)
Adipocytes/metabolism , Gene Expression Profiling/methods , Glucose Transport Proteins, Facilitative/metabolism , Macrophages/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Tristetraprolin/metabolism , Animals , Benzothiazoles , Cells, Cultured , DNA Primers/genetics , Diamines , Mice , Organic Chemicals , Quinolines , Taq Polymerase
SELECTION OF CITATIONS
SEARCH DETAIL
...