Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15356, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097050

ABSTRACT

To investigate if deep-sedated colonoscopy affects adenoma detection in certain colorectal segment. Review of colonoscopy reports, electronic images and medical records of individuals underwent screening colonoscopy with or without propofol sedation between October 2020 and March 2021 from seven hospitals in China. A total of 4500 individuals were analyzed. There was no significant difference in ADR between deep-sedated colonoscopy and unsedated colonoscopy [45.4% vs. 46.3%, P > 0.05]. The APP of deep-sedated colonoscopy was lower than unsedated colonoscopy (1.76 ± 0.81 vs. 2.00 ± 1.30, P < 0.05). Both average number of adenomas and luminal distention score of splenic flexure and descending colon were lower in deep-sedated colonoscopy (P < 0.05), and average number of adenomas was positively correlated with an improved distension score in splenic flexure and descending colon (splenic flexure r = 0.031, P < 0.05; descending colon r = 0.312, P < 0.05). Linear regression model showed deep-sedated colonoscopy significantly affected luminal distention of splenic flexure and descending colon as well as average number of adenomas detected in splenic flexure (P < 0.05). Deep-sedated colonoscopy decreased adenoma detection in splenic flexure and the luminal distention of splenic flexure and descending colon compared with unsedated colonoscopy.


Subject(s)
Adenoma , Colorectal Neoplasms , Propofol , Adenoma/diagnostic imaging , Colonoscopy/methods , Colorectal Neoplasms/diagnostic imaging , Humans , Mass Screening/methods
2.
Polymers (Basel) ; 9(7)2017 Jul 22.
Article in English | MEDLINE | ID: mdl-30970977

ABSTRACT

Originated from the bottom-up synthetic strategy, molecularly imprinted polymers (MIPs) possess the inherent ability of selective and specific recognition and binding of the target analytes, with their structural cavities that can match the target molecules in respect to size, shape, and functional groups. Herein, based on the high selectivity of MIPs and the fluorescence properties of the ß-NaYF4:Yb3+, Er3+ upconversion nanoparticles, MIPs with both specificity and fluorescent signals are fabricated to recognize trace sterigmatocystin (ST) with high selectivity and sensitivity. The structure analogue of ST, 1,8-dihydroxyanthraquinone (DT), was employed as the template molecule, acrylamide as the functional monomer, 3-methacryloyloxypropyltrimethoxysilane as the crosslinking agent, and a new molecular imprinting technique of non-aqueous sol-gel method is used to synthesize a molecularly imprinted material with high selectivity to ST. Under optimal conditions, the fluorescence enhancement of fluorescent MIPs increased as the concentration of ST increased. In the range of 0.05⁻1.0 mg L-1, fluorescence enhancement and the concentration showed a good linear relationship with a detection limit of 0.013 mg L-1. Real sample analysis achieved the recoveries of 83.8⁻88.8% (RSD 5.1%) for rice, 82.1⁻87.5% (RSD 4.6%) for maize, and 80.6⁻89.2% (RSD 3.0%) for soybeans, respectively, revealing the feasibility of the developed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...