Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131250, 2024 May.
Article in English | MEDLINE | ID: mdl-38556241

ABSTRACT

In recent years, the application of biopolymer-based nanofibers prepared via microfluidic blow spinning (MBS) for food packaging has continuously increased due to their advantages of biocompatibility, biodegradability, and safety. However, the poor spinnability, undesirable water barrier capacity, and loss of antibacterial and antioxidant properties of biopolymer-based nanofibers strictly restrict their real-world applications. In this work, carvacrol (CV) incorporated konjac glucomannan (KGM)/polylactic acid (PLA) nanofibrous films (KP-CV) were produced by MBS. The FTIR spectra and XRD analysis revealed the hydrogen bonding interactions among CV, PLA, and KGM, thus significantly improving the TS of KP-CV nanofibrous films from 0.23 to 1.27 MPa with increased content of CV from 0 % to 5 %. Besides, KP-CV nanofibrous films showed improved thermal stability, excellent hydrophobicity (WCA: 128.19°, WVP: 1.02 g mm/m2 h kPa), and sustained release of CV combined with good antioxidant activities (DPPH radical scavenging activity: 77.51 ± 1.57 %), and antibacterial properties against S. aureus (inhibition zone: 26.33 mm) and E. coli (inhibition zone: 22.67 mm). Therefore, as prepared KP-CV nanofibrous films can be potentially applied as packaging materials for the extended shelf life of cherry tomatoes.


Subject(s)
Antioxidants , Cymenes , Food Packaging , Mannans , Nanofibers , Polyesters , Food Packaging/methods , Mannans/chemistry , Polyesters/chemistry , Cymenes/chemistry , Cymenes/pharmacology , Nanofibers/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
2.
Int J Biol Macromol ; 249: 126131, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37543273

ABSTRACT

Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.


Subject(s)
Chitosan , Nanoparticles , Vitis , Chitosan/chemistry , Caseins , Gliadin , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Permeability , Food Packaging
3.
Int J Biol Macromol ; 244: 125365, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37330095

ABSTRACT

In this work, a multifunctional bilayer film was prepared by solvent casting method. Elderberry anthocyanins (EA) were incorporated into konjac glucomannan (KGM) film as the inner indicator layer (KEA). ß-cyclodextrin (ß-CD) loaded with oregano essential oil (OEO) inclusion complexes (ß-CD@OEO) was prepared and incorporated into chitosan (CS) film as the outer hydrophobic and antibacterial layer (CS-ß-CD@OEO). The impacts of ß-CD@OEO on the morphological, mechanical, thermal, water vapor permeability and water resistance properties, pH sensitivity, antioxidant, and antibacterial activities of bilayer films were thoroughly evaluated. The incorporation of ß-CD@OEO into bilayer films can significantly improve the mechanical properties (tensile strength (TS): 65.71 MPa and elongation at break (EB): 16.81 %), thermal stability, and water resistance (Water contact angle (WCA): 88.15°, water vapor permeability (WVP): 3.53 g mm/m2 day kPa). In addition, the KEA/CS-ß-CD@OEO bilayer films showed color variations in acid-base environments, which could be used as pH-responsive indicators. The KEA/CS-ß-CD@OEO bilayer films also presented controlled release of OEO, good antioxidant, and antimicrobial activity, which exhibited good potential for the preservation of cheese. To sum up, KEA/CS-ß-CD@OEO bilayer films have potential applications in the field of food packaging industry.


Subject(s)
Cheese , Chitosan , Oils, Volatile , Origanum , beta-Cyclodextrins , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anthocyanins , Antioxidants/pharmacology , Origanum/chemistry , Chitosan/chemistry , Steam , Anti-Bacterial Agents/chemistry , Food Packaging/methods
4.
Int J Biol Macromol ; 219: 897-906, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35963350

ABSTRACT

In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.


Subject(s)
Euterpe , Animals , Anti-Bacterial Agents/chemistry , Antioxidants , Food Packaging , Glucans , Hydrogen-Ion Concentration , Mannans , Permeability , Solvents , Spectroscopy, Fourier Transform Infrared , Steam
5.
J Sci Food Agric ; 102(14): 6555-6565, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35587687

ABSTRACT

BACKGROUND: The stabilization of oil-in-water (O/W) emulsions has long been explored. Assembly of polymer networks is an effective method for stabilizing O/W emulsions. Konjac glucomannan (KGM) is a plant polysaccharide and the network of KGM gel is a good candidate for stabilizing O/W emulsions based on its high viscosity and thickening properties. However, natural KGM has strong hydrophilicity and is not able to offer interfacial activity. Octenyl succinic anhydride (OSA) is a hydrophobic molecule, which is widely used as thickener and stabilizer in food emulsions. In this work, the amphiphilic biopolymer (OSA-KGM) was fabricated by modifying the KGM with OSA. Furthermore, OSA-KGM biopolymer was used to prepare O/W emulsions, which were then freeze-dried and used to prepare oleogels as fat substitute for bakery products. RESULTS: OSA-KGM had advanced hydrophobicity with water contact angle 81.13° and adsorption behavior at the oil-water interface, with interfacial tension decreasing from 18.52 to 13.57 mN m-1 within 1 h. The emulsification of OSA-KGM remarkably improved the stability of emulsions without phase separation during storage for 31 days. Oleogels with OSA-KGM showed good thixotropic and structure recovery properties (approximately 100%) and low oil loss (from 69.5% to 50.4%). Cakes made from oleogels had a softer texture than cakes made from peanut oil and margarine. CONCLUSION: Amphiphilic biopolymer OSA-KGM shows advanced interfacial activity and hydrophobicity. This paper provides an insight into preparing stable O/W emulsions with a new biopolymer and oleogels potentially applied as fat substitute in bakery products. © 2022 Society of Chemical Industry.


Subject(s)
Fat Substitutes , Succinic Anhydrides , Emulsions/chemistry , Mannans , Margarine , Organic Chemicals , Peanut Oil , Polymers , Water/chemistry
6.
Artif Cells Nanomed Biotechnol ; 46(5): 1018-1024, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28749189

ABSTRACT

Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 µg/ml for coarse powder up to 215.7 µg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The Cmax and AUC0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.


Subject(s)
Drug Compounding/methods , Lutein/chemistry , Lutein/pharmacokinetics , Nanoparticles/chemistry , Administration, Oral , Animals , Biological Availability , Lutein/administration & dosage , Male , Nanotechnology , Particle Size , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...