Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(13): 20207-20221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369660

ABSTRACT

Coal gasification technology is essential for realizing clean and efficient conversion of coal, as well as for reducing carbon emissions. However, coal gasification technology is accompanied by a large amount of coal gasification wastewater that is biodegradable. In this work, tourmaline was applied as a catalyst in electro-Fenton like process for treating coal gasification wastewater. The optimal applied parameters of coal gasification wastewater were investigated as follows: current density of 90 mA cm-2, tourmaline dosage of 8 g L-1, electrode gap of 1 cm, and temperature at 25 °C; the COD removal ratio reached 91.24% after 240-min treatment. In addition, the current density and tourmaline dosage were further optimized by response surface method. The result was about current density with 82.4 mA cm-2 and catalyst with 7.57 g L-1; the predicted COD removal efficiency was 86.91%. Under the optimal parameters the actual COD removal efficiency was 88.25% a little high than the predicted value. To explore the reusability of tourmaline as Fenton reaction catalyst, five cycles of experiments were carried out. The result demonstrated that tourmaline could be used as catalyst for treating coal gasification wastewater by electro-Fenton like process.


Subject(s)
Silicates , Wastewater , Water Pollutants, Chemical , Coal , Carbon , Catalysis , Hydrogen Peroxide , Oxidation-Reduction , Waste Disposal, Fluid
2.
Bioprocess Biosyst Eng ; 42(9): 1435-1445, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31079221

ABSTRACT

Vanillin and syringaldehyde are widely used as flavoring and fragrance agents in the food products. The potential of a macro-mesoporous adsorption resin was assessed for separation of these binary mixtures. This work focuses on modeling of the competitive adsorption behaviors and exploration of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the separation mechanism was mainly contributed by hydrophobic effect. Subsequently, the competitive Langmuir isotherm model was used to fit the competitive adsorption isotherms. The pore diffusion coefficient was obtained by macropore diffusion model. Afterwards, a mathematical model was established to predict the breakthrough curves of the binary mixture at various operating conditions. The data and model presented are valuable for design and simulation of the continuous chromatographic separation process.


Subject(s)
Benzaldehydes/chemistry , Models, Chemical , Polymers/chemistry , Adsorption , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...