Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 21(5): 592-611, 2023 09.
Article in English | MEDLINE | ID: mdl-37194680

ABSTRACT

The Devonian-Carboniferous (D-C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D-C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15 N excursion (~-3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13 Ccarb and δ13 Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13 C-depleted anoxic water masses. Decreased δ34 S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13 Corg values associated with maximal △13 C. The integrated δ15 N-δ13 C-δ34 S data suggest that significant ocean-redox variation was recorded in South China during the D-C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.


Subject(s)
Carbon , Geologic Sediments , Humans , Facies , Carbonates/analysis , Water , Hypoxia , China
2.
Mar Pollut Bull ; 167: 112277, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33756373

ABSTRACT

The hydrothermal products of the Clam hydrothermal field from the Okinawa Trough were analyzed by gas chromatography-mass spectrometry to determine abundances of hydrocarbons. The n-alkanes in the hydrothermal products conformed to a bimodal distribution and exhibited an odd-to-even predominance of high molecular weight and an even-to-odd predominance of low molecular weight n-alkanes with maxima at C16 and C18. The total concentration of n-alkanes in hydrothermal sediment was much higher than that in hydrothermal sulfide and altered rock. The carbon isotopic value of individual n-alkanes in hydrothermal sediment was slightly higher than that in pelagic sediment. The concentrations and individual carbon isotopic compositions of n-alkanes suggest that the n-alkanes in hydrothermal products may be mainly the result of the metabolic activity of submarine microorganisms. Additionally, the present results suggest that the abiogenic contribution to source of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa Trough should not be ignored.


Subject(s)
Bivalvia , Hydrocarbons , Alkanes/analysis , Animals , Carbon Isotopes , Gas Chromatography-Mass Spectrometry , Hydrocarbons/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...