Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunobiology ; 228(2): 152323, 2023 03.
Article in English | MEDLINE | ID: mdl-36753789

ABSTRACT

OBJECTIVE: Preventing the progression of hepatic fibrosis is an important strategy to improve the prognosis of liver disease. The purpose of this study was to investigate the role of sirtuin7 (SIRT7) and high mobility group box 1 (HMGB1) acetylation in the occurrence and development of hepatic fibrosis. MATERIALS AND METHODS: Hepatic fibrosis mice model was induced by CCl4. TGF-ß1 was used to activated quiescent hepatic stellate cell (qHSC) into activated HSC (aHSC). Hematoxylin-eosin evaluated hepatic fibrosis in vivo, and the distribution of α-smooth muscle actin (α-SMA) or HMGB1 was detected by immunohistochemistry or immunofluorescence. The expressions of SIRT7, autophagy related proteins, and HSC activation-related proteins were detected by Western blot. Immunoprecipitation detected the acetylation level of HMGB1. Lysine mutants of HMGB1 were constructed in vitro to explore the acetylation sites of HMGB1. RESULTS: Hepatocyte autophagy and activation levels were enhanced in CCl4 group or aHSC group, and the acetylation level of HMGB1 was increased. Nuclear transfer of HMGB1 occurred in aHSC, and HMGB1was mainly distributed in cytoplasm. The expression of SIRT7 in CCl4 group or aHSC group was most significantly decreased, and knockdown of SIRT7 leads to increased levels of HSCs autophagy and activation. Overexpression of SIRT7 or interference of HMGB1 alone in aHSC can reduce the level of autophagy and activation of aHSC. However, continued overexpression of SIRT7 in shHMGB1-aHSC could not reduce the autophagy and activation levels of aHSC. Among the 11 Flag-HMGB1 mutants, the acetylation level of K86R-Flag-HMGB1 was the lowest. The acetylation level of K86R-Flag-HMGB1 did not change due to SIRT7 downregulation. CONCLUSION: This study proved that SIRT7 can directly target the K86R site of HMGB1 and participate in regulating the expression and distribution of HMGB1, thus affecting the autophagy and activation level of HSCs.


Subject(s)
HMGB1 Protein , Sirtuins , Mice , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , HMGB1 Protein/metabolism , Acetylation , Liver Cirrhosis , Autophagy , Sirtuins/adverse effects , Sirtuins/metabolism
2.
J Cell Commun Signal ; 17(3): 723-736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36508052

ABSTRACT

Hepatic stellate cell (HSC) activation is the central event in hepatic fibrosis. The cross-talk between HSCs and hepatocytes, which is mediated by extracellular vesicles (EVs), affects HSC activation. This study aimed to investigate whether Catalpol (CTP) attenuated hepatic fibrosis via modulating EVs. Mice were injected intraperitoneally with CCl4 for 4 weeks to induce hepatic fibrosis. They were gavaged with CTP daily. Mouse serum EVs were isolated and identified using nanoparticle tracking analysis and transmission electron microscopy. Mouse hepatocytes (AML12) and primary HSCs were used to investigate the cell-to-cell crosstalk. The autophagosome-autolysosome fusion was determined using the autophagic flux assay. Hepatic fibrosis was attenuated by CTP, with a decrease of the myofibroblast marker, alpha-smooth muscle actin. The CTP treatment lowered the serum EVs. The co-culture of HSCs and the EVs derived from the CTP-treated mice or hepatocytes reduced HSC proliferation and the expressions of ACTA2 and Col1a1. After the CCl4 treatment, the autophagosomes in AML12 cells were increased, while the autolysosomes were reduced. The decrease of autophagic cargo receptor SQSTM1 in the CTP group suggested that autophagic degradation was sustained. After inhibiting the endogenous Rac1-GTP of hepatocytes, the co-culture of EVs and HSCs reduced Rac1-GTP. The Rac1-GTP level in serum EVs from the CTP-treated mice was reduced in vivo. CTP inhibited autophagy in hepatocytes by reducing Rac1-GTP and thus affect the amount of Rac1-GTP in hepatocyte-derived EVs and the formation of EVs, which attenuated hepatic fibrosis via inhibiting HSC activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...