Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559263

ABSTRACT

Alzheimer's Disease (AD) is the leading cause of dementia. It results in cortical thickness changes and is associated with a decline in cognition and behaviour. Such decline affects multiple important day-to-day functions, including memory, language, orientation, judgment and problem-solving. Recent research has made important progress in identifying brain regions associated with single outcomes, such as individual AD status and general cognitive decline. The complex projection from multiple brain areas to multiple AD outcomes, however, remains poorly understood. This makes the assessment and especially the prediction of multiple AD outcomes - each of which may unveil an integral yet different aspect of the disease - challenging, particularly when some are not strongly correlated. Here, uniting residual learning, partial least squares (PLS), and predictive modelling, we develop an explainable, generalisable, and reproducible method called the Residual Partial Least Squares Learning (the re-PLS Learning) to (1) chart the pathways between large-scale multivariate brain cortical thickness data (inputs) and multivariate disease and behaviour data (outcomes); (2) simultaneously predict multiple, non-pairwise-correlated outcomes; (3) control for confounding variables (e.g., age and gender) affecting both inputs and outcomes and the pathways in-between; (4) perform longitudinal AD disease status classification and disease severity prediction. We evaluate the performance of the proposed method against a variety of alternatives on data from AD patients, subjects with mild cognitive impairment (MCI), and cognitively normal individuals (n=1,196) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results unveil pockets of brain areas in the temporal, frontal, sensorimotor, and cingulate areas whose cortical thickness may be respectively associated with declines in different cognitive and behavioural subdomains in AD. Finally, we characterise re-PLS' geometric interpretation and mathematical support for delivering meaningful neurobiological insights and provide an open software package (re-PLS) available at https://github.com/thanhvd18/rePLS.

2.
Environ Technol ; : 1-14, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471045

ABSTRACT

Arsenic-containing sludge (ABG) is a common hazardous waste in the metallurgical industry and poses a serious threat to environmental safety. However, its instability and mobility have a significant impact on the environment. Traditional curing methods are time-consuming and costly, often resulting in incomplete curing. In this study, we introduce a curing/stabilisation method with a steel slag-fly ash gel material after ABG acid treatment. The toxic leaching of arsenic from ABG was reduced to 220 mg/kg by treating the sludge with acids (H2SO4-H3PO4) at different solid-to-liquid ratios. Afterward, H2O2 was added to oxidise As(III) to As(V). The ABG was cured/stabilised using an alkali-activated steel slag-fly ash gel material. The cured product exhibited optimal arsenic fixation under an ABG/steel slag/fly ash mass ratio of 1:4:2, a curing temperature of 60°C, a curing time of 20 h, and an ambient pH of 12.5. Under these conditions, steel slag-fly ash facilitated Ca-As precipitation, resulting in a hydration reaction that produced C-S-H gel. Additionally, the reaction generated calcium hydroxide, calcium and iron pyroxene, silica, and iron ferrite, which adsorbed part of the free arsenic, completing the curing of the acid-treated ABG and stabilising arsenic leaching toxicity. The leaching of arsenic in the ABG was much lower than the Chinese 'Hazardous Wastes Leaching Toxicity Identification Standard' (GB5085.3-2007) (5 mg/L), with an arsenic curing rate exceeding 99%. The mechanism of arsenic solidification involves the combined effects of chemical precipitation, physical encapsulation, and adsorption. Collectively, our findings demonstrated that the use of steel slag-fly ash gel as a functional material for ABG curing holds considerable environmental and economic benefits. Therefore, this study provides theoretical guidance and provides insights into the experimental feasibility of ABG treatment.

3.
Mol Psychiatry ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177349

ABSTRACT

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n = 97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC = 75.4%, 95% CI = 67.0-83.3%; in non-affective psychosis AUC = 80.5%, 95% CI = 72.1-88.0%, and in affective psychosis AUC = 58.7%, 95% CI = 44.2-72.0%). Test-retest reliability ranged between ICC = 0.48 (95% CI = 0.35-0.59) and ICC = 0.22 (95% CI = 0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 min, diagnostic classification of the FSA increased from AUC = 71.7% (95% CI = 63.1-80.3%) to 75.4% (95% CI = 67.0-83.3%) and phase encoding direction reliability from ICC = 0.29 (95% CI = 0.14-0.43) to ICC = 0.51 (95% CI = 0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.

4.
Transl Psychiatry ; 14(1): 23, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218952

ABSTRACT

There is significant heterogeneity in individual responses to antipsychotic drugs, but there is no reliable predictor of antipsychotics response in first-episode psychosis. This study aimed to investigate whether psychotic symptom-related alterations in fractional anisotropy (FA) and mean diffusivity (MD) of white matter (WM) at the early stage of the disorder may aid in the individualized prediction of drug response. Sixty-eight first-episode patients underwent baseline structural MRI scans and were subsequently randomized to receive a single atypical antipsychotic throughout the first 12 weeks. Clinical symptoms were evaluated using the eight "core symptoms" selected from the Positive and Negative Syndrome Scale (PANSS-8). Follow-up assessments were conducted at the 4th, 8th, and 12th weeks by trained psychiatrists. LASSO regression model and cross-validation were conducted to examine the performance of baseline symptom-related alterations FA and MD of WM in the prediction of individualized treatment outcome. Fifty patients completed both clinical follow-up assessments by the 8th and 12th weeks. 30 patients were classified as responders, and 20 patients were classified as nonresponders. At baseline, the altered diffusion properties of fiber tracts in the anterior thalamic radiation, corticospinal tract, callosum forceps minor, longitudinal fasciculi (ILF), inferior frontal-occipital fasciculi (IFOF) and superior longitudinal fasciculus (SLF) were related to the severity of symptoms. These abnormal fiber tracts, especially the ILF, IFOF, and SLF, significantly predicted the response to antipsychotic treatment at the individual level (AUC = 0.828, P < 0.001). These findings demonstrate that early microstructural WM changes contribute to the pathophysiology of psychosis and may serve as meaningful individualized predictors of response to antipsychotics.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , White Matter , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , White Matter/diagnostic imaging , Antipsychotic Agents/therapeutic use , Diffusion Tensor Imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Anisotropy , Brain/diagnostic imaging
5.
Psychol Med ; 54(3): 582-591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37553976

ABSTRACT

BACKGROUND: The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis. METHODS: The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12-17 years old; 411 early-middle adults, 18-54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively. RESULTS: We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs. CONCLUSIONS: To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Adolescent , Child , Young Adult , Middle Aged , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Insular Cortex
6.
Cerebellum ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151675

ABSTRACT

Multiple lines of evidence across human functional, lesion, and animal data point to a cerebellar role, in particular of crus I, crus II, and lobule VIIB, in cognitive function. However, a mapping of distinct facets of cognitive function to cerebellar structure is missing. We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcellation was performed with a validated automated segmentation pipeline (CERES) and stringent visual quality check (n = 662 subjects retained from initial n = 1452). Canonical correlation analyses (CCA) examined regional gray matter volumetric (GMV) differences in association to cognitive function (quantified with NIH Toolbox Cognition domain, NIH-TB), accounting for psychopathology severity, age, sex, scan location, and intracranial volume. Multivariate CCA uncovered a significant correlation between two components entailing a latent cognitive canonical (NIH-TB subscales) and a brain canonical variate (cerebellar GMV and intracranial volume, ICV), surviving bootstrapping and permutation procedures. The components correspond to partly shared cerebellar-cognitive function relationship with a first map encompassing cognitive flexibility (r = 0.89), speed of processing (r = 0.65), and working memory (r = 0.52) associated with regional GMV in crus II (r = 0.57) and lobule X (r = 0.59) and a second map including the crus I (r = 0.49) and lobule VI (r = 0.49) associated with working memory (r = 0.51). We show evidence for a structural subspecialization of the cerebellum topography for cognitive function in a transdiagnostic sample.

8.
Patterns (N Y) ; 4(12): 100878, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106615

ABSTRACT

Since the 18th century, the p value has been an important part of hypothesis-based scientific investigation. As statistical and data science engines accelerate, questions emerge: to what extent are scientific discoveries based on p values reliable and reproducible? Should one adjust the significance level or find alternatives for the p value? Inspired by these questions and everlasting attempts to address them, here, we provide a systematic examination of the p value from its roles and merits to its misuses and misinterpretations. For the latter, we summarize modest recommendations to handle them. In parallel, we present the Bayesian alternatives for seeking evidence and discuss the pooling of p values from multiple studies and datasets. Overall, we argue that the p value and hypothesis testing form a useful probabilistic decision-making mechanism, facilitating causal inference, feature selection, and predictive modeling, but that the interpretation of the p value must be contextual, considering the scientific question, experimental design, and statistical principles.

9.
Res Sq ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609149

ABSTRACT

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n=97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC=75.4%, 95%CI=67.0%-83.3%; in non-affective psychosis AUC=80.5%, 95%CI=72.1-88.0%, and in affective psychosis AUC=58.7%, 95%CI=44.2-72.0%). Test-retest reliability ranged between ICC=0.48 (95%CI=0.35-0.59) and ICC=0.22 (95%CI=0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC=0.51 (95%CI=0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 minutes, diagnostic classification of the FSA increased from AUC=71.7% (95%CI=63.1%-80.3%) to 75.4% (95%CI=67.0%-83.3%) and phase encoding direction reliability from ICC=0.29 (95%CI=0.14-0.43) to ICC=0.51 (95%CI=0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.

10.
Am J Psychiatry ; 180(11): 827-835, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37644811

ABSTRACT

OBJECTIVE: Identification of robust biomarkers that predict individualized response to antipsychotic treatment at the early stage of psychotic disorders remains a challenge in precision psychiatry. The aim of this study was to investigate whether any functional connectome-based neural traits could serve as such a biomarker. METHODS: In a discovery sample, 49 patients with first-episode psychosis received multi-paradigm fMRI scans at baseline and were clinically followed up for 12 weeks under antipsychotic monotherapies. Treatment response was evaluated at the individual level based on the psychosis score of the Brief Psychiatric Rating Scale. Cross-paradigm connectivity and connectome-based predictive modeling were employed to train a predictive model that uses baseline connectomic measures to predict individualized change rates of psychosis scores, with model performance evaluated as the Pearson correlations between the predicted change rates and the observed change rates, based on cross-validation. The model generalizability was further examined in an independent validation sample of 24 patients in a similar design. RESULTS: The results revealed a paradigm-independent connectomic trait that significantly predicted individualized treatment outcome in both the discovery sample (predicted-versus-observed r=0.41) and the validation sample (predicted-versus-observed r=0.47, mean squared error=0.019). Features that positively predicted psychosis change rates primarily involved connections related to the cerebellar-cortical circuitry, and features that negatively predicted psychosis change rates were chiefly connections within the cortical cognitive systems. CONCLUSIONS: This study discovers and validates a connectome-based functional signature as a promising early predictor for individualized response to antipsychotic treatment in first-episode psychosis, thus highlighting the potential clinical value of this biomarker in precision psychiatry.


Subject(s)
Antipsychotic Agents , Connectome , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Connectome/methods , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Treatment Outcome , Magnetic Resonance Imaging/methods , Biomarkers
11.
medRxiv ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37503088

ABSTRACT

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n=97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC=75.4%, 95%CI=67.0%-83.3%; in non-affective psychosis AUC=80.5%, 95%CI=72.1-88.0%, and in affective psychosis AUC=58.7%, 95%CI=44.2-72.0%). Test-retest reliability ranged between ICC=0.48 (95%CI=0.35-0.59) and ICC=0.22 (95%CI=0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC=0.51 (95%CI=0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 minutes, diagnostic classification of the FSA increased from AUC=71.7% (95%CI=63.1%-80.3%) to 75.4% (95%CI=67.0%-83.3%) and phase encoding direction reliability from ICC=0.29 (95%CI=0.14-0.43) to ICC=0.51 (95%CI=0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.

12.
Cereb Cortex ; 33(14): 9088-9094, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37310179

ABSTRACT

The ADRA2A-1291 C > G polymorphism and deficits in visual memory and inhibitory control were associated with attention deficit hyperactivity disorder (ADHD). The present study aimed to examine whether the ADRA2A G/G genotype affected gray matter (GM) networks in ADHD and whether these gene-brain modulations were associated with cognitive function in ADHD. Seventy-five drug-naïve ADHD children and 70 healthy controls were recruited. The GM networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Visual memory and inhibitory control were assessed by the visual memory test and the Stroop test, respectively. SNP genotyping of rs1800544 was performed. A significant interaction between ADHD diagnosis and gene polymorphism was observed in the nodal degree of the left inferior parietal lobule and left inferior (opercular) frontal gyrus. In the ADHD group, nodal efficiency in the left inferior (orbital) frontal gyrus in ADHD with G/G was lower than that in ADHD without G/G. Moreover, the ADRA2A-modulated alterations in nodal properties were associated with visual memory and inhibitory control. Our findings provide novel gene-brain behavior association evidence that GM network alterations, especially in the frontoparietal loop, were related to visual memory and inhibitory control in ADHD children with ADRA2A-G/G.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Gray Matter , Humans , Child , Gray Matter/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Polymorphism, Genetic , Brain/diagnostic imaging , Cognition , Receptors, Adrenergic , Magnetic Resonance Imaging
13.
Asian J Psychiatr ; 86: 103659, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327564

ABSTRACT

OBJECTIVE: Many magnetic resonance imaging (MRI) studies have showed significant structural abnormalities of the corpus callosum (CC) and dysregulated interhemispheric functional connectivity (FC) in schizophrenia. Although the hemispheres are mainly linked through CC, few studies directly examined the relationship between aberrant interhemispheric FC and the white matter deficits of the CC in schizophrenia. METHODS: One hundred and sixty-nine antipsychotic-naive first-episode schizophrenia patients (AN-FES) and 214 healthy controls (HCs) were recruited. Diffusional and functional MRI data were obtained for each participant, and fractional anisotropy (FA) values of the five CC subregions and interhemispheric FC for each participant were acquired. Between-group differences in these metrics were compared using multivariate analysis of covariance (MANCOVA). Moreover, sparse canonical correlation analysis (sCCA) was conducted to explore correlations of fibers integrity of the CC subregions with dysregulated interhemispheric FC in patients. RESULTS: Compared with HCs, the patients with schizophrenia showed significantly reduced FA values of the CC subregions and dysregulated connectivity between two cerebral hemispheres. The canonical correlation coefficients identified five significant sCCA modes between FA and FC (r > 0.75, p < 0.001), suggesting strong relationships between FA values of the CC subregions and interhemispheric FC in patients. CONCLUSION: Our findings support a key role of CC in maintaining ongoing functional communication between two cerebral hemispheres, and suggest that microstructural changes of white matter fibers crossing different CC subregions may affect special interhemispheric FC in schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , White Matter , Humans , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Antipsychotic Agents/therapeutic use , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology
14.
Neuroimage ; 277: 120238, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37364743

ABSTRACT

The majority of human connectome studies in the literature based on functional magnetic resonance imaging (fMRI) data use either an anterior-to-posterior (AP) or a posterior-to-anterior (PA) phase encoding direction (PED). However, whether and how PED would affect test-retest reliability of functional connectome is unclear. Here, in a sample of healthy subjects with two sessions of fMRI scans separated by 12 weeks (two runs per session, one with AP, the other with PA), we tested the influence of PED on global, nodal, and edge connectivity in the constructed brain networks. All data underwent the state-of-the-art Human Connectome Project (HCP) pipeline to correct for phase-encoding-related distortions before entering analysis. We found that at the global level, the PA scans showed significantly higher intraclass correlation coefficients (ICCs) for global connectivity compared with AP scans, which was particularly prominent when using the Seitzman-300 atlas (versus the CAB-NP-718 atlas). At the nodal level, regions most strongly affected by PED were consistently mapped to the cingulate cortex, temporal lobe, sensorimotor areas, and visual areas, with significantly higher ICCs during PA scans compared with AP scans, regardless of atlas. Better ICCs were also observed during PA scans at the edge level, in particular when global signal regression (GSR) was not performed. Further, we demonstrated that the observed reliability differences between PEDs may relate to a similar effect on the reliability of temporal signal-to-noise ratio (tSNR) in the same regions (that PA scans were associated with higher reliability of tSNR than AP scans). Averaging the connectivity outcome from the AP and PA scans could increase median ICCs, especially at the nodal and edge levels. Similar results at the global and nodal levels were replicated in an independent, public dataset from the HCP-Early Psychosis (HCP-EP) study with a similar design but a much shorter scan session interval. Our findings suggest that PED has significant effects on the reliability of connectomic estimates in fMRI studies. We urge that these effects need to be carefully considered in future neuroimaging designs, especially in longitudinal studies such as those related to neurodevelopment or clinical intervention.


Subject(s)
Connectome , Sensorimotor Cortex , Humans , Connectome/methods , Reproducibility of Results , Rest , Brain/diagnostic imaging , Signal-To-Noise Ratio , Magnetic Resonance Imaging/methods , Transforming Growth Factor beta
15.
Schizophr Bull ; 49(3): 697-705, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37010371

ABSTRACT

BACKGROUND AND HYPOTHESIS: Early prediction of treatment response to antipsychotics in schizophrenia remains a challenge in clinical practice. This study aimed to investigate if brain morphometries including gray matter volume and cortical thickness could serve as potential predictive biomarkers in first-episode schizophrenia. STUDY DESIGN: Sixty-eight drug-naïve first-episode patients underwent baseline structural MRI scans and were subsequently randomized to receive a single antipsychotic throughout the first 12 weeks. Assessments for symptoms and social functioning were conducted by eight "core symptoms" selected from the Positive and Negative Syndrome Scale (PANSS-8) and the Personal and Social performance scale (PSP) multiple times during follow-ups. Treatment outcome was evaluated as subject-specific slope coefficients for PANSS-8 and PSP scores using linear mixed model. LASSO regression model were conducted to examine the performance of baseline gray matter volume and cortical thickness in prediction of individualized treatment outcome. STUDY RESULTS: The study showed that individual brain morphometries at baseline, especially the orbitofrontal, temporal and parietal cortex, pallidum and amygdala, significantly predicted 12-week treatment outcome of PANSS-8 (r[predicted vs observed] = 0.49, P = .001) and PSP (r[predicted vs observed] = 0.40, P = .003) in first-episode schizophrenia. Moreover, the gray matter volume performed better than cortical thickness in the prediction the symptom changes (P = .034), while cortical thickness outperformed gray matter volume in the prediction of outcome of social functioning (P = .029). CONCLUSIONS: These findings provide initial evidence that brain morphometry have potential to be used as prognostic predictors for antipsychotic response in patients, encouraging the future investigation of the translational value of these measures in precision psychiatry.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Brain/diagnostic imaging , Treatment Outcome , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging
16.
Cereb Cortex ; 33(4): 1527-1535, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36790361

ABSTRACT

Understanding how structural connectivity alterations affect aberrant dynamic function using network control theory will provide new mechanistic insights into the pathophysiology of schizophrenia. The study included 140 drug-naive schizophrenia patients and 119 healthy controls (HCs). The average controllability (AC) quantifying capacity of brain regions/networks to shift the system into easy-to-reach states was calculated based on white matter connectivity and was compared between patients and HCs as well as functional network topological and dynamic properties. The correlation analysis between AC and duration of untreated psychosis (DUP) were conducted to characterize the controllability progression pattern without treatment effects. Relative to HCs, patients exhibited reduced AC in multiple nodes, mainly distributed in default mode network (DMN), visual network (VN), and subcortical regions, and increased AC in somatomotor network. These networks also had impaired functional topology and increased temporal variability in dynamic functional connectivity analysis. Longer DUP was related to greater reductions of AC in VN and DMN. The current study highlighted potential structural substrates underlying altered functional dynamics in schizophrenia, providing a novel understanding of the relationship of anatomic and functional network alterations.


Subject(s)
Schizophrenia , White Matter , Humans , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging
17.
Hum Brain Mapp ; 44(6): 2191-2208, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36637216

ABSTRACT

The multilayer dynamic network model has been proposed as an effective method to understand the brain function. In particular, derived from the definition of clustering coefficient in static networks, the temporal clustering coefficient provides a direct measure of the topological stability of dynamic brain networks and shows potential in predicting altered brain functions. However, test-retest reliability and demographic-related effects on this measure remain to be evaluated. Using a data set from the Human Connectome Project (157 male and 180 female healthy adults; 22-37 years old), the present study investigated: (1) the test-retest reliability of temporal clustering coefficient across four repeated resting-state functional magnetic resonance imaging scans as measured by intraclass correlation coefficient (ICC); and (2) sex- and age-related effects on temporal clustering coefficient. The results showed that (1) the temporal clustering coefficient had overall moderate test-retest reliability (ICC > 0.40 over a wide range of densities) at both global and subnetwork levels, (2) female subjects showed significantly higher temporal clustering coefficient than males at both global and subnetwork levels, particularly within the default-mode and subcortical regions, and (3) temporal clustering coefficient of the subcortical subnetwork was positively correlated with age in young adults. The results of sex effects were robustly replicated in an independent REST-meta-MDD data set, while the results of age effects were not. Our findings suggest that the temporal clustering coefficient is a relatively reliable and reproducible approach for identifying individual differences in brain function, and provide evidence for demographically related effects on the human brain dynamic connectomes.


Subject(s)
Connectome , Magnetic Resonance Imaging , Young Adult , Humans , Male , Female , Adult , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Connectome/methods , Cluster Analysis
18.
Psychol Med ; 53(11): 4915-4922, 2023 08.
Article in English | MEDLINE | ID: mdl-35775370

ABSTRACT

BACKGROUND: Difficulty in cognitive adjustment after a conflict or error is a hallmark for many psychiatric disorders, yet the underlying neural correlates are not fully understood. We have previously shown that post-success and post-error cognitive controls are associated with distinct mechanisms particularly related to the prefrontal-cerebellar circuit, raising the possibility that altered dynamic interactions in this circuit may underlie mental illness. METHODS: This study included 136 patients with three diagnosed disorders [48 schizophrenia (SZ), 49 bipolar disorder (BD), 39 attention deficit hyperactivity disorder (ADHD)] and 89 healthy controls who completed a stop-signal task during fMRI scans. Brain activations for concurrent, post-success, and post-error cognitive controls were analyzed and compared between groups. Dynamic causal modeling was applied to investigate prefrontal-cerebellar effective connectivity patterns during post-success and post-error processing. RESULTS: No significant group differences were observed for brain activations and overall effective connectivity structures during post-success and post-error conditions. However, significant group differences were shown for the modulational effect on top-down connectivity from the prefrontal cortex to the cerebellum during post-error trials (pFWE = 0.02), which was driven by reduced modulations in both SZ and ADHD. During post-success trials, there were significantly decreased modulational effect on bottom-up connectivity from the cerebellum to the prefrontal cortex in ADHD (pFWE = 0.04) and decreased driving input to the cerebellum in SZ (pFWE = 0.04). CONCLUSIONS: These findings suggest that patients with SZ and ADHD are associated with insufficient neural modulation on the prefrontal-cerebellar circuit during post-success and post-error cognitive processing, a phenomenon that may underlie cognitive deficits in these disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain Mapping , Humans , Brain , Cerebellum/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Magnetic Resonance Imaging , Cognition
19.
Cereb Cortex ; 33(6): 3311-3317, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36562992

ABSTRACT

Previous fMRI studies have reported more random brain functional graph configurations in social anxiety disorder (SAD). However, it is still unclear whether the same configurations would occur in gray matter (GM) graphs. Structural MRI was performed on 49 patients with SAD and on 51 age- and gender-matched healthy controls (HC). Single-subject GM networks were obtained based on the areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared, and the structure-function coupling was examined. These network measures were further correlated with the clinical characteristics in the SAD group. Compared with controls, the SAD patients demonstrated globally decreased clustering coefficient and characteristic path length. Altered topological properties were found in the fronto-limbic and sensory processing systems. Altered metrics were associated with the illness duration of SAD. Compared with the HC group, the SAD group exhibited significantly decreased structural-functional decoupling. Furthermore, structural-functional decoupling was negatively correlated with the symptom severity in SAD. These findings highlight less-optimized topological configuration of the brain structural networks in SAD, which may provide insights into the neural mechanisms underlying the excessive fear and avoidance of social interactions in SAD.


Subject(s)
Gray Matter , Phobia, Social , Humans , Brain/diagnostic imaging , Cerebral Cortex , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Phobia, Social/diagnostic imaging , Case-Control Studies
20.
Biol Psychiatry ; 93(2): 167-177, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36085080

ABSTRACT

BACKGROUND: Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS: Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS: In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS: These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Endophenotypes , Bayes Theorem , Emotions/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Facial Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...