Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 135(4): 298-305, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36781353

ABSTRACT

Chinese baijiu, an ancient fermented alcoholic beverage, contains ethanol and a variety of compounds. One of the most popular types of Chinese baijiu is Jiang-flavor baijiu. To investigate the effects of Jiang-flavor baijiu on organ function and gut microbiota, we developed a moderate drinking mouse model and studied its effects on the liver, kidney biomarkers, memory function, and gut microbiota. The results showed that ethanol caused more hepatic steatosis, liver and kidney damage, and memory impairment than Jiang-flavour baijiu consumption. Furthermore, Jiang-flavor baijiu altered the gut microbiota by increasing the abundance of beneficial taxa such as Lactobacillus and Akkermansia, whereas ethanol increased the abundance of harmful bacteria such as Prevotella and Mucispirillum. Our findings provide preliminary evidence that moderate dose Jiang-flavor baijiu regulates gut microbiota and organ function and provide a theoretical foundation for future research on the positive health effects of particular varieties of Chinese baijiu.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Fermentation , Alcoholic Beverages/analysis , Ethanol , Bacteria
2.
J Mater Chem B ; 8(35): 7947-7955, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32756668

ABSTRACT

The widespread application of thermo-responsive hydrogels requires materials with robust mechanical properties and tunable responsiveness. Herein, we report robust thermo-responsive physical hydrogels with a tunable network structure and responsiveness by controlling the manner of crystallization of hydrophobic blocks. Biocompatible, stereocomplexable poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) were introduced into thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) to obtain the enantiomeric grafted copolymers PNIPAM-g-PLLA and PNIPAM-g-PDLA and their corresponding hydrogels. The hydrophobic PLLA/PDLA domains served as physical crosslinking junctions in the hydrogels. The crystalline structure of the hydrogels can be facilely tuned by varying the ratio of PLLA/PDLA enantiomeric blocks. Stereocomplex (SC) crystallization between PLLA and PDLA facilitates the formation of H-bonded hydrophobic domains with denser chain packing, which endows the racemic hydrogels with a stronger network structure, higher mechanical strength, and better solvent resistance compared to enantiopure examples. The hydrogels exhibit good thermo-sensitivity in water; the stronger racemic hydrogel network restricts volume shrinkage and water desorption at high temperatures, enabling the facile control of thermo-responsiveness. The crystallization-tuned thermo-responsiveness of racemic and enantiopure hydrogels also allows for the design of assembled bilayer hydrogels capable of thermally triggered reversible shape morphing.


Subject(s)
Hydrogels/chemistry , Temperature , Acrylic Resins/chemistry , Hydrophobic and Hydrophilic Interactions , Polyesters/chemistry , Stereoisomerism
3.
Adv Mater ; 32(28): e2001693, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32463558

ABSTRACT

Stimuli-responsive shape-transforming hydrogels have shown great potential toward various engineering applications including soft robotics and microfluidics. Despite significant progress in designing hydrogels with ever more sophisticated shape-morphing behaviors, an ultimate goal yet to be fulfilled is programmable reversible shape transformation. It is reported here that transient structural anisotropy can be programmed into copolymer hydrogels of N-isopropylacrylamide and stearyl acrylate. Structural anisotropy arises from the deformed hydrophobic domains of the stearyl groups after thermomechanical programming, which serves as a template for the reversible globule-to-coil transition of the poly(N-isopropylacrylamide) chains. The structural anisotropy is transient and can be erased upon cooling. This allows repeated programming for reversible shape transformation, an unknown feature for the current hydrogels. The programmable reversible transformation is expected to greatly extend the technical scope for hydrogel-based devices.

4.
Macromol Rapid Commun ; 39(14): e1700806, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29383780

ABSTRACT

Constructing dual or multiple noncovalent crosslinks is highly effective to improve the mechanical and stimuli-responsive properties of supramolecular physical hydrogels, due to the synergistic effects of different noncovalent bonds. Herein, a series of tough physical hydrogels are prepared by solution casting and subsequently swelling the films of poly(ureidopyrimidone methacrylate-co-stearyl acrylate-co-acrylic acid). The hydrophobic interactions between crystallizable alkyl chains and the quadruple hydrogen bonds between ureidopyrimidone (UPy) motifs serve as the dual crosslinks of hydrogels. Synergistic effects between the hydrophobic interactions and hydrogen bonds render the hydrogels excellent mechanical properties, with tensile breaking stress up to 4.6 MPa and breaking strain up to 680%. The UPy motifs promote the crystallization of alkyl chains and the hydrophobic alkyl chains also stabilize UPy-UPy hydrogen bonding. The resultant hydrogels are responsive to multiple external stimuli, such as temperature, pH, and ion; therefore, they show the thermal-induced dual and metal ion-induced triple shape memory behaviors.


Subject(s)
Cross-Linking Reagents/chemistry , Hydrogels/chemistry , Polymers/chemistry , Acrylates/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Pyrimidinones/chemistry
5.
ACS Macro Lett ; 7(2): 233-238, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-35610899

ABSTRACT

Design of the polymer networks with tunable mechanical properties and multishape memory effects (multi-SMEs) is highly desired in the engineering applications. Herein, we report on the stereocomplexed and homochiral polyurethane (PU) elastomers with tunable multi-SMEs by cross-linking the triblock prepolymers bearing the poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) enantiomeric segments. The homochiral PU is nearly amorphous, yet the stereocomplexed PU becomes highly crystalline due to the stereocomplexation of enantiomeric segments. Moreover, the two distinct thermal (glass, melting) transitions of PLLA (or PDLA) segments in PUs are integrated to realize the thermally induced triple- and quadruple-SMEs. Control over the enantiomeric segmental ratios allows the feasible manipulation of crystallizability, mechanical and thermal properties, and multi-SMEs of PUs.

6.
Soft Matter ; 13(45): 8502-8510, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29091097

ABSTRACT

Physical hydrogels crosslinked by non-covalent interactions have attained increasing attention due to their good mechanical properties and processability. However, the use of feasible and controllable non-covalent interactions is highly essential for preparing such hydrogels. In this article, we report on stereocomplexed physical hydrogels prepared by simple casting and swelling of amphiphilic graft copolymers bearing a poly(acrylic acid) (PAA) backbone and poly(l-lactic acid) (PLLA) or poly(d-lactic acid) (PDLA) stereocomplexable side chains. The microstructure, swelling behavior, and mechanical and shape memory properties of the obtained hydrogels can be tuned by varying the copolymer composition and stereocomplex (SC) crystallization of PLLA/PDLA enantiomeric chains. The long PLLA or PDLA chains segregate to form hydrophobic, crystallized domains in water, serving as physical crosslinking junctions for hydrogels. SC crystallization between PLLA and PDLA further enhances the number density of physical crosslinkers of enantiomerically mixed hydrogels. The SC content increases as the PLLA/PDLA ratio approaches 1/1 in enantiomerically mixed hydrogels. The average distance between crosslinking junctions declines for the hydrogels with a high PLLA (or PDLA) mass fraction (MPLA) and SC content, due to the increased number density of physical crosslinkers. Accordingly, the tensile strength and the Young's modulus increase but the swelling ratio and the elongation-at-break of the hydrogels decrease with an increase in MPLA and SC content. The hydrogels exhibit shape memory behavior; the shape fixing ability is enhanced by the SC crystallization of PLLA/PDLA side chains in the hydrogels.

SELECTION OF CITATIONS
SEARCH DETAIL
...