Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.033
Filter
1.
Nat Med ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844797

ABSTRACT

Acute graft-versus-host disease (aGVHD) of the lower gastrointestinal (GI) tract is a major cause of morbidity and mortality in patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT). Vedolizumab is a gut-selective anti-α4ß7 integrin monoclonal antibody that reduces gut inflammation by inhibiting migration of GI-homing T lymphocytes. The efficacy and safety of vedolizumab added to standard GVHD prophylaxis (calcineurin inhibitor plus methotrexate/mycophenolate mofetil) was evaluated for prevention of lower-GI aGVHD after unrelated donor allo-HSCT in a randomized, double-blind, placebo-controlled phase 3 trial. Enrollment closed early during the COVID-19 pandemic with 343 patients randomized (n = 174 vedolizumab, n = 169 placebo), and 333 received ≥1 intravenous dose of 300 mg vedolizumab (n = 168) or placebo (n = 165) and underwent allo-HSCT. The primary end point was met; Kaplan-Meier (95% confidence interval) estimated rates of lower-GI aGVHD-free survival by day +180 after allo-HSCT were 85.5% (79.2-90.1) with vedolizumab versus 70.9% (63.2-77.2) with placebo (hazard ratio, 0.45; 95% confidence interval, 0.27-0.73; P < 0.001). For the 5 key secondary efficacy end points analyzed by day +180 after allo-HSCT, rates of lower-GI aGVHD-free and relapse-free survival and grade C-D aGVHD-free survival were significantly higher with vedolizumab versus placebo. No significant treatment differences were found for the other key secondary end points of non-relapse mortality, overall survival and grade B-D aGVHD-free survival, respectively. Incidence of treatment-related serious adverse events analyzed in patients receiving ≥1 dose of study treatment (n = 334) was 6.5% (n = 11 of 169) vedolizumab versus 8.5% (n = 14 of 165) placebo. When added to standard calcineurin inhibitor-based GVHD prevention, lower-GI aGVHD-free survival was significantly higher with vedolizumab versus placebo. ClinicalTrials.gov identifier: NCT03657160 .

2.
Front Pharmacol ; 15: 1370263, 2024.
Article in English | MEDLINE | ID: mdl-38756372

ABSTRACT

Background: Single atrium is very rare congenital cardiac anomaly in adults. The prognosis of patients with single atrium is very poor, with 50% of patients dying owing to cardiopulmonary complications in childhood. Herein, we focused on anesthesia management for noncardiac surgery in patients with single atrium. Case presentation: A 58-year-old male with a history of bilateral varicocele underwent laparotomy for high-position ligation of the spermatic vein. The patient also had a history of single atrium, atrial fibrillation, chronic heart failure, pulmonary hypertension (PH), and complete right bundle branch block (CRBBB). Given the significant complications associated with general anesthesia in patients with PH, we preferred to use low-dose epidural anesthesia for this patient. Transthoracic echocardiography was used to assess cardiac function before and during surgery and guide perioperative fluid therapy. To limit the stress response, we used a regional nerve block for reducing postoperative pain. Furthermore, we used norepinephrine to appropriately increase the systemic vascular resistance in response to the reduction of systemic vascular resistance caused by epidural anesthesia. Conclusion: Low-dose epidural anesthesia can be safely used in patients with single atrium and PH. The use of perioperative transthoracic echocardiography is helpful in guiding fluid therapy and effectively assessing the cardiac structure and function of patients. Prophylactic administration of norepinephrine before epidural injection may make it easier to maintain the patient's BP.

3.
BMC Genom Data ; 25(1): 48, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783174

ABSTRACT

OBJECTIVES: Ottelia Pers. is in the Hydrocharitaceae family. Species in the genus are aquatic, and China is their centre of origin in Asia. Ottelia alismoides (L.) Pers., which is distributed worldwide, is a distinguishing element in China, while other species of this genus are endemic to China. However, O. alismoides is also considered endangered due to habitat loss and pollution in some Asian countries. Ottelia alismoides is the only submerged macrophyte that contains three carbon dioxide-concentrating mechanisms, i.e. bicarbonate (HCO3-) use, crassulacean acid metabolism and the C4 pathway. In this study, we present its first genome assembly to help illustrate the various carbon metabolism mechanisms and to enable genetic conservation in the future. DATA DESCRIPTION: Using DNA and RNA extracted from one O. alismoides leaf, this work produced ∼ 73.4 Gb HiFi reads, ∼ 126.4 Gb whole genome sequencing short reads and ∼ 21.9 Gb RNA-seq reads. The de novo genome assembly was 6,455,939,835 bp in length, with 11,923 scaffolds/contigs and an N50 of 790,733 bp. Genome assembly completeness assessment with Benchmarking Universal Single-Copy Orthologs revealed a score of 94.4%. The repetitive sequence in the assembly was 4,875,817,144 bp (75.5%). A total of 116,176 genes were predicted. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.


Subject(s)
Carbon , Genome, Plant , Hydrocharitaceae , Hydrocharitaceae/genetics , Hydrocharitaceae/metabolism , Carbon/metabolism , Molecular Sequence Annotation , Whole Genome Sequencing , China
4.
BMC Oral Health ; 24(1): 622, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807156

ABSTRACT

BACKGROUND: C-X-C motif chemokine ligand (CXCL8), also known as interleukin-8, is a prototypical CXC family chemokine bearing a glutamic acid-leucine-arginine (ELR) motif that plays key roles in the onset and progression of a range of cancers in humans. Many prior studies have focused on exploring the relationship between CXCL8 gene polymorphisms and the risk of cancer. However, the statistical power of many of these reports was limited, yielding ambiguous or conflicting results in many cases. METHODS: Accordingly, the PubMed, Wanfang, Scopus and Web of Science databases were searched for articles published until July 20, 2023 using the keywords 'IL-8' or 'interleukin-8' or 'CXCL8', 'polymorphism' and 'cancer' or 'tumor'. Odds ratios (ORs) and 95% confidence intervals (CIs) were utilized to examine the association. The CXCL8 +781 polymorphism genotypes were assessed with a TaqMan assay. RESULTS: About 29 related publications was conducted in an effort to better understand the association between these polymorphisms and disease risk. The CXCL8 -353A/T polymorphism was associated with an increased overall cancer risk [A vs. T, odds ratio (OR) = 1.255, 95% confidence interval (CI) (1.079-1.459), Pheterogeneity = 0.449, P = 0.003]. The CXCL8 +781 T/C allele was similarly associated with a higher risk of cancer among Caucasians [TT vs. TC + CC, OR = 1.320, 95%CI (1.046-1.666), Pheterogeneity = 0.375, P = 0.019]. Furthermore, oral cancer patients carrying the CXCL8 +781 TT + TC genotypes exhibited pronounced increases in serum levels of CXCL8 as compared to the CC genotype (P < 0.01), and also shown similar trend as compared to genotype-matched normal controls (P < 0.01). Finally, several limitations, such as the potential for publication bias or heterogeneity among the included studies should be paid attention. CONCLUSION: Current study suggested that the CXCL8 -353 and +781 polymorphisms may be associated with a greater risk of cancer, which might impact cancer prevention, diagnosis, or treatment through the different expression of CXCL8. At the same time, the +781 polymorphism may further offer value as a biomarker that can aid in the early identification and prognostic evaluation of oral cancer.


Subject(s)
Genetic Predisposition to Disease , Interleukin-8 , Mouth Neoplasms , Humans , Interleukin-8/genetics , Mouth Neoplasms/genetics , Case-Control Studies , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Risk Factors
5.
Chin J Nat Med ; 22(5): 455-465, 2024 May.
Article in English | MEDLINE | ID: mdl-38796218

ABSTRACT

In this study, we reported the discovery and structure-activity relationship analysis of chrysin derivatives as a new class of inhibitors targeting poly (ADP-ribose) polymerase 1 (PARP1). Among these derivatives, compound 5d emerged as the most effective chrysin-based inhibitor of PARP1, with an IC50 value of 108 nmol·L-1. This compound significantly inhibited the proliferation and migration of breast cancer cell lines HCC-1937 and MDA-MB-436 by inducing DNA damage. Furthermore, 5d induced apoptosis and caused an extended G1/S-phase in these cell lines. Molecular docking studies revealed that 5d possesses a strong binding affinity toward PARP1. In vivo, in a xenograft model, 5d effectively reduced tumor growth by downregulating PARP1 expression. Overall, compound 5d shows promise as a potential therapeutic agent for the treatment of BRCA wild-type breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Flavonoids , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/therapeutic use , Breast Neoplasms/drug therapy , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Cell Line, Tumor , Animals , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Docking Simulation , Mice , Drug Design , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude , Mice, Inbred BALB C , Molecular Structure
6.
Microbiol Spectr ; 12(6): e0349023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38690913

ABSTRACT

The Okinawa Trough (OT) is a back-arc basin with a wide distribution of active cold seep systems. However, our understanding of the metabolic function of microbial communities in the cold seep sediments of the OT remains limited. In this study, we investigated the vertical profiles of functional genes involved in methane, nitrogen, and sulphur cycling in the cold seep sediments of the OT. Furthermore, we explored the possible coupling mechanisms between these biogeochemical cycles. The study revealed that the majority of genes associated with the nitrogen and sulphur cycles were most abundant in the surface sediment layers. However, only the key genes responsible for sulphur disproportionation (sor), nitrogen fixation (nifDKH), and methane metabolism (mcrABG) were more prevalent within sulfate-methane transition zone (SMTZ). Significant positive correlations (P < 0.05) were observed between functional genes involved in sulphur oxidation, thiosulphate disproportionation with denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), as well as between AOM/methanogenesis and nitrogen fixation, and between sulphur disproportionation and AOM. A genome of Filomicrobium (class Alphaproteobacteria) has demonstrated potential in chemoautotrophic activities, particularly in coupling DNRA and denitrification with sulphur oxidation. Additionally, the characterized sulfate reducers such as Syntrophobacterales have been found to be capable of utilizing nitrate as an electron acceptor. The predominant methanogenic/methanotrophic groups in the OT sediments were identified as H2-dependent methylotrophic methanogens (Methanomassiliicoccales and Methanofastidiosales) and ANME-1a. This study offered a thorough understanding of microbial ecosystems in the OT cold seep sediments, emphasizing their contribution to nutrient cycling.IMPORTANCEThe Okinawa Trough (OT) is a back-arc basin formed by extension within the continental lithosphere behind the Ryukyu Trench arc system. Cold seeps are widespread in the OT. While some studies have explored microbial communities in OT cold seep sediments, their metabolic potential remains largely unknown. In this study, we used metagenomic analysis to enhance comprehension of the microbial community's role in nutrient cycling and proposed hypotheses on the coupling process and mechanisms involved in biogeochemical cycles. It was revealed that multiple metabolic pathways can be performed by a single organism or microbes that interact with each other to carry out various biogeochemical cycling. This data set provided a genomic road map on microbial nutrient cycling in OT sediment microbial communities.


Subject(s)
Archaea , Bacteria , Geologic Sediments , Methane , Nitrogen Fixation , Nitrogen , Sulfur , Methane/metabolism , Geologic Sediments/microbiology , Sulfur/metabolism , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Archaea/metabolism , Archaea/genetics , Archaea/classification , Microbiota/genetics , Seawater/microbiology , Japan , Phylogeny
7.
MedComm (2020) ; 5(5): e535, 2024 May.
Article in English | MEDLINE | ID: mdl-38741887

ABSTRACT

Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

8.
Inorg Chem ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768636

ABSTRACT

Selective actinide coordination (from lanthanides) is critical for both nuclear waste management and sustainable development of nuclear power. Hydrophilic ligands used as masking agents to withhold actinides in the aqueous phase are currently highly pursued, while synthetic accessibility, water solubility, acid resistance, and extraction capability are the remaining problems. Most reported hydrophilic ligands are only effective at low acidity. We recently proved that the phenanthroline diimide skeleton was an efficient building block for the construction of highly efficient acid-resistant hydrophilic lanthanide/actinide separation agents, while the limited water solubility hindered the loading capability of the ligand. Herein, amine was introduced as the terminal solubilizing group onto the phenanthroline diimide backbone, which after protonation in acid showed high water solubility. The positively charged terminal amines enhanced the ligand water solubility to a large extent, which, on the other side, was believed to be detrimental for the coordination and complexation of the metal cations. We showed that by delicately adjusting the alkyl chain spacing, this intuitive disadvantage could be relieved and superior extraction performances could be achieved. This work holds significance for both hydrophilic lanthanide/actinide separation ligand design and, concurrently, offers insights into the development of water-soluble lanthanide/actinide complexes for biomedical and bioimaging applications.

9.
World J Clin Cases ; 12(10): 1750-1765, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38660076

ABSTRACT

BACKGROUND: Both N6-methyladenosine (m6A) methylation and autophagy are considered relevant to the pathogenesis of ulcerative colitis (UC). However, a systematic exploration of the role of the com-bination of m6A methylation and autophagy in UC remains to be performed. AIM: To elucidate the autophagy-related genes of m6A with a diagnostic value for UC. METHODS: The correlation between m6A-related genes and autophagy-related genes (ARGs) was analyzed. Finally, gene set enrichment analysis (GSEA) was performed on the characteristic genes. Additionally, the expression levels of four characteristic genes were verified in dextran sulfate sodium (DSS)-induced colitis in mice. RESULTS: GSEA indicated that BAG3, P4HB and TP53INP2 were involved in the inflammatory response and TNF-α signalling via nuclear factor kappa-B. Furthermore, polymerase chain reaction results showed significantly higher mRNA levels of BAG3 and P4HB and lower mRNA levels of FMR1 and TP53INP2 in the DSS group compared to the control group. CONCLUSION: This study identified four m6A-ARGs that predict the occurrence of UC, thus providing a scientific reference for further studies on the pathogenesis of UC.

10.
World J Hepatol ; 16(3): 477-489, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577540

ABSTRACT

BACKGROUND: The neutrophil-to-lymphocyte ratio (NLR) is commonly utilized as a prognostic indicator in end-stage liver disease (ESLD), encompassing conditions like liver failure and decompensated cirrhosis. Nevertheless, some studies have contested the prognostic value of NLR in ESLD. AIM: To investigate the ability of NLR to predict ESLD. METHODS: Databases, such as Embase, PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Weipu, and Wanfang, were comprehensively searched to identify studies published before October 2022 assessing the prognostic ability of NLR to predict mortality in patients with ESLD. Effect sizes were calculated using comprehensive meta-analysis software and SATAT 15.1. RESULTS: A total of thirty studies involving patients with end-stage liver disease (ESLD) were included in the evaluation. Among the pooled results of eight studies, it was observed that the Neutrophil-to-Lymphocyte Ratio (NLR) was significantly higher in non-survivors compared to survivors (random-effects model: standardized mean difference = 1.02, 95% confidence interval = 0.67-1.37). Additionally, twenty-seven studies examined the associations between NLR and mortality in ESLD patients, reporting either hazard ratios (HR) or odds ratios (OR). The combined findings indicated a link between NLR and ESLD mortality (random-effects model; univariate HR = 1.07, 95%CI = 1.05-1.09; multivariate HR = 1.07, 95%CI = 1.07-1.09; univariate OR = 1.29, 95%CI = 1.18-1.39; multivariate OR = 1.29, 95%CI = 1.09-1.49). Furthermore, subgroup and meta-regression analyses revealed regional variations in the impact of NLR on ESLD mortality, with Asian studies demonstrating a more pronounced effect. CONCLUSION: Increased NLR in patients with ESLD is associated with a higher risk of mortality, particularly in Asian patients. NLR is a useful prognostic biomarker in patients with ESLD.

11.
Adv Sci (Weinh) ; : e2308438, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582099

ABSTRACT

Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.

12.
Int J Clin Pharm ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570474

ABSTRACT

BACKGROUND: An increasing number of systematic reviews (SRs) have evaluated the diagnostic values of next-generation sequencing (NGS) in infectious diseases (IDs). AIM: This umbrella analysis aimed to assess the potential risk of bias in existing SRs and to summarize the published diagnostic values of NGS in different IDs. METHOD: We searched PubMed, Embase, and the Cochrane Library until September 2023 for SRs assessing the diagnostic validity of NGS for IDs. Two investigators independently determined review eligibility, extracted data, and evaluated reporting quality, risk of bias, methodological quality, and evidence certainty in the included SRs. RESULTS: Eleven SRs were analyzed. Most SRs exhibited a moderate level of reporting quality, while a serious risk of bias was observed in all SRs. The diagnostic performance of NGS in detecting pneumocystis pneumonia and periprosthetic/prosthetic joint infection was notably robust, showing excellent sensitivity (pneumocystis pneumonia: 0.96, 95% CI 0.90-0.99, very low certainty; periprosthetic/prosthetic joint infection: 0.93, 95% CI 0.83-0.97, very low certainty) and specificity (pneumocystis pneumonia: 0.96, 95% CI 0.92-0.98, very low certainty; periprosthetic/prosthetic joint infection: 0.95, 95% CI 0.92-0.97, very low certainty). NGS exhibited high specificity for central nervous system infection, bacterial meningoencephalitis, and tuberculous meningitis. The sensitivity to these infectious diseases was moderate. NGS demonstrated moderate sensitivity and specificity for multiple infections and pulmonary infections. CONCLUSION: This umbrella analysis indicates that NGS is a promising technique for diagnosing pneumocystis pneumonia and periprosthetic/prosthetic joint infection with excellent sensitivity and specificity. More high-quality original research and SRs are needed to verify the current findings.

13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673879

ABSTRACT

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Subject(s)
Astrocytes , Glutamic Acid , Kynurenine , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Mice , Kynurenine/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/toxicity , Signal Transduction/drug effects , Mice, Knockout , Probenecid/pharmacology , Mice, Inbred C57BL , Male , Brain/metabolism , Brain/pathology , Brain/drug effects , NF-kappa B/metabolism
14.
Front Pharmacol ; 15: 1162883, 2024.
Article in English | MEDLINE | ID: mdl-38549665

ABSTRACT

Background: In clinical practice, antibiotics and/or inhaled or oral hormone preparations are the first line of treatment for chronic pharyngitis. However, this therapeutic regimen is not satisfactory enough. At present, medicinal plants as dietary supplements or functional foods are widely recognized for the treatment and prevention of different diseases. Purpose: This study aimed to evaluate the efficacy of the botanical lozenge made from several medicinal plant extracts in the treatment of chronic pharyngitis and its effects on patients' illness perception and adherence to treatment. Methods: Patients with chronic pharyngitis were randomly assigned to the experimental group (n = 52) or the control group (n = 51). Patients were given botanical lozenges prepared from the extracts of medicinal plants such as Siraitia grosvenorii (Swingle) C. Jeffrey ex A.M.Lu and Zhi Y. Zhang [Cucurbitaceae; Siraitiae fructus], Lonicera japonica Thunb [Caprifoliaceae; Lonicerae japonicae flos], Platycodon grandiflorus (Jacq.) A. DC [Campanulaceae; Platycodon radix], and Glycyrrhiza uralensis Fisch. ex DC [Fabaceae; Glycyrrhizae radix et rhizoma] or placebos made of starch for 15 days. The improvement of pharyngeal symptoms and signs, illness perception, and adherence to treatment were evaluated at the end of the intervention. Results: The total score of pharyngeal symptoms of patients in the experimental group (3.33 ± 2.33) was significantly lower than that in the control group (5.20 ± 2.93) (p < 0.01). In comparison to the control group (3.43 ± 1.43), the total pharyngeal signs score of patients in the experimental group (2.69 ± 1.59) was considerably lower (p < 0.01). The improvement rates of pharyngeal itching, dry throat, pharyngeal foreign body sensation, aggravation due to excessive speaking, and congestion of pharyngeal mucosa in the experimental group were 73.81%, 67.50%, 67.57%, 65.22% and 44%, respectively, which were significantly higher than those in the control group (p < 0.05). In addition, patients taking botanical lozenges had better illness perception and adherence to treatment than those taking placebos (p < 0.05). Patients with low adherence to treatment showed less personal control, concerns, and understanding of chronic pharyngitis (p < 0.05). Conclusion: Botanical lozenges not only aided patients in recovering from chronic pharyngitis but also improved their positive perceptions of the disease, which helped them adhere to their treatment regimen. Clinical Trial Registration: [https://www.chictr.org.cn/], identifier [ChiCTR2200062139].

15.
Cell Oncol (Dordr) ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536650

ABSTRACT

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.

16.
Acta Biomater ; 178: 181-195, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447808

ABSTRACT

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Endothelial Cells , Calcium/metabolism , Fibrinolytic Agents , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/physiology , Endothelium
17.
Inorg Chem ; 63(14): 6173-6183, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38530927

ABSTRACT

Unfolding the solution coordination chemistry of high-valent transuranium elements with the "CHON"-type ligands is important to understand the fundamental chemistry of actinides and to design more efficient extractants for partitioning of transuranium elements in advanced nuclear fuel cycles. Here, the complexation of a hexavalent neptunyl ion (NpO22+ or Np(VI)) with oxydiacetic acid (ODA) has been systematically investigated in comparison with its amide analogues N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) and N,N,N',N'-tetramethyl-3-oxa-glutaramide (TMOGA) both experimentally and computationally. The formation of both 1:1 and 1:2 complexes between Np(VI) and the three ligands was identified by spectrophotometry, and their stability constants were obtained and compared with those of hexavalent U(VI) and Pu(VI). The corresponding bonding nature is elucidated by using energy decomposition analysis (EDA), electrostatic potential (ESP), ELF contours, and natural orbitals for chemical valence (NOCV) methods, which shows that the Np-O bonds are essentially ionic in character and the unoccupied 6d orbitals of Np play a key role in enhancing the covalent interactions between Np(VI) and the three ligands.

18.
ACS Appl Mater Interfaces ; 16(13): 16809-16819, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502907

ABSTRACT

Polymers/polymer matrix composites possessing low dielectric constants (low-k polymer dielectrics) contribute to the advance of electronics, for instance, microprocessor chips, mobile phone antennas, and data communication terminals. However, the intrinsic long-chain structural characteristic results in poor thermal conductivities, which draw heat accumulation and undermine the outstanding low-k performance of polymers. Herein, multisource free-volume effects that combine two novel kinds of extra free volume with the known in-cage free volume of polyhedral oligomeric silsesquioxanes (POSSs) are discussed to reduce the capacity for dielectric constant reduction. The multisource free-volume effects of POSSs are associated with the thermal conductive network formed by the hexagonal boron nitride (BN) in the polymer matrix. The results show a decent balance between low-k performance (dielectric constant is 2.08 at 1 MHz and 1.98 at 10 GHz) and thermal conductivity (0.555 W m-1 K-1, 4.91 times the matrix). The results provide a new idea to maximize the free-volume effects of POSSs to optimize dielectric properties together with other desired performances for the dielectrics.

19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527593

ABSTRACT

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Pyroptosis/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Male , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Hippocampus/pathology , HSP70 Heat-Shock Proteins/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/pathology , Hydroxamic Acids/pharmacology , Aging/metabolism , Aging/pathology , Disease Models, Animal
20.
Planta ; 259(4): 83, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441675

ABSTRACT

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall , Germination/genetics , Gibberellins , Homeodomain Proteins/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...