Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 15(10): 1602-1614, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36114668

ABSTRACT

Photosynthesis, which provides oxygen and energy for all living organisms, is circadian regulated. Photosynthesis-associated metabolism must tightly coordinate with the circadian clock to maximize the efficiency of the light-energy capture and carbon fixation. However, the molecular basis for the interplay of photosynthesis and the circadian clock is not fully understood, particularly in crop plants. Here, we report two central oscillator genes of circadian clock, OsPRR95 and OsPRR59 in rice, which function as transcriptional repressors to negatively regulate the rhythmic expression of OsMGT3 encoding a chloroplast-localized Mg2+ transporter. OsMGT3-dependent rhythmic Mg fluctuations modulate carbon fixation and consequent sugar output in rice chloroplasts. Furthermore, sugar triggers the increase of superoxide, which may act as a feedback signal to positively regulate the expression of OsPRR95 and OsPRR59. Taken together, our results reveal a negative-feedback loop that strengthens the crosstalk between photosynthetic carbon fixation and the circadian clock, which may improve plan adaptation and performance in fluctuating environments.


Subject(s)
Circadian Clocks , Oryza , Carbon Cycle , Circadian Clocks/genetics , Circadian Rhythm/genetics , Homeostasis , Magnesium , Oryza/genetics , Oxygen , Sugars , Superoxides
2.
Curr Biol ; 32(20): 4337-4349.e5, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36055239

ABSTRACT

Symbiotic nitrogen fixation provides large amounts of nitrogen for global agricultural systems with little environmental or economic costs. The basis of symbiosis is the nutrient exchange occurring between legumes and rhizobia, but key regulators controlling nutrient exchange are largely unknown. Here, we reveal that magnesium (Mg), an important nutrient factor that preferentially accumulates in inner cortical cells of soybean nodules, shows the most positive correlation with nodule carbon (C) import and nitrogen (N) export. We further identified a pair of Mg transporter genes, GmMGT4 and GmMGT5, that are specifically expressed in the nodule cortex, modulating both nodule Mg import and C-N transport processes. The GmMGT4&5-dependent Mg import activates the activity of a plasmodesmata-located ß-1,3-glucanase GmBG2 and consequently keeps plasmodesmata permeable for C-N transport in nodule inner cortical cells. Our studies discovered an important regulating pathway for host plants fine-tuning nodule C-N trading to achieve optimal growth, which may be helpful for optimizing nutrient management for soybean production.


Subject(s)
Fabaceae , Symbiosis , Symbiosis/physiology , Root Nodules, Plant , Magnesium/metabolism , Nitrogen/metabolism , Carbon/metabolism , Nitrogen Fixation , Glycine max/genetics , Fabaceae/metabolism
3.
Nat Plants ; 6(7): 848-859, 2020 07.
Article in English | MEDLINE | ID: mdl-32541951

ABSTRACT

Photosynthesis provides food, fibre and fuel that support our society; understanding the mechanisms controlling dynamic changes in this process helps identify new options to improve photosynthesis. Photosynthesis shows diel changes, which have been largely attributed to external light/dark conditions, as well as internal gene expression and the post-translational modification of critical enzymes. Here we report diel fluctuations of magnesium (Mg) in rice (Oryza sativa) chloroplasts, which may function as a rhythm regulator contributing to the post-translational regulation of photosynthetic CO2 assimilation in rice. We found that a chloroplast-localized Mg2+ transporter gene, OsMGT3, which is rhythmically expressed in leaf mesophyll cells, partly modulates Mg fluctuations in rice chloroplasts. Knockout of OsMGT3 substantially reduced Mg2+ uptake, as well as the amplitude of free Mg2+ fluctuations in chloroplasts, which was closely associated with a decrease in ribulose 1,5-bisphosphate carboxylase activity in vivo and a consequent decline in the photosynthetic rate. In addition, the mesophyll-specific overexpression of OsMGT3 remarkably improved photosynthetic efficiency and growth performance in rice. Taken together, these observations demonstrate that OsMGT3-dependent diel Mg fluctuations in chloroplasts may contribute to Mg-dependent enzyme activities for photosynthesis over the daily cycle. Enhancing Mg2+ input to chloroplasts could be a potential approach to improving photosynthetic efficiency in plants.


Subject(s)
Chloroplasts/metabolism , Magnesium/metabolism , Oryza/metabolism , Photosynthesis , Cation Transport Proteins/metabolism , Cation Transport Proteins/physiology , Chloroplasts/physiology , Circadian Rhythm , Magnesium/physiology , Oryza/physiology , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/physiology , Ribulose-Bisphosphate Carboxylase/metabolism
4.
Food Chem Toxicol ; 67: 193-200, 2014 May.
Article in English | MEDLINE | ID: mdl-24593988

ABSTRACT

Curcumin (CUR) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. In recent years, it has been reported that CUR exhibits significant anti-tumor activity in vivo. However, the pharmacokinetic features of CUR have indicated poor oral bioavailability, which may be related to its extensive metabolism. The CUR metabolites might be responsible for the antitumor pharmacological effects in vivo. Tetrahydrocurcumin (THC) is one of the major metabolites of CUR. In the present study, we examined the efficacy and associated mechanism of action of THC in human breast cancer MCF-7 cells for the first time. Here, THC exhibited significant cell growth inhibition by inducing MCF-7 cells to undergo mitochondrial apoptosis and G2/M arrest. Moreover, co-treatment of MCF-7 cells with THC and p38 MAPK inhibitor, SB203580, effectively reversed the dissipation in mitochondrial membrane potential (Δψm), and blocked THC-mediated Bax up-regulation, Bcl-2 down-regulation, caspase-3 activation as well as p21 up-regulation, suggesting p38 MAPK might mediate THC-induced apoptosis and G2/M arrest. Taken together, these results indicate THC might be an active antitumor form of CUR in vivo, and it might be selected as a potentially effective agent for treatment of human breast cancer.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Division/drug effects , Curcumin/analogs & derivatives , G2 Phase/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Breast Neoplasms/enzymology , Curcumin/pharmacology , Enzyme Activation , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...