Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3618-3626, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34676723

ABSTRACT

The study of regional historical climate change is limited by the availability of observational data, which is not conducive to understanding long-term climate change. In this study, we used the tree-ring cores of Pinus tabuliformis to establish a tree ring width chronology (RES) from the southeast Shanxi Province, and analyzed the relationship between precipitation and tree-ring width chronology. The results showed that the residual chronology had a good correlation (r=0.636, n=59, P<0.01) with January-June precipitation. A linear regression was used to reconstruct the January-June precipitation for the southeastern Shanxi Province, which accounts for 40.4% of the instrumental precipitation variation during 1724-2019. Dry conditions occurred during 1742-1771, 1830-1848, 1872-1894, 1917-1945, 1961-1981, and 1990-2019, while the periods of 1727-1741, 1772-1829, 1849-1871, 1895-1916 were relatively wet. There were 10 extremely dry years and six extremely wet years during the period from 1724 to 2019. The longest dry periods were 1742-1771 and 1990-2019, while the longest wet period was 1772-1829. Results of spatial climate correlation analyses with gridded land surface data showed that the precipitation reconstruction contained a strong regional precipitation signal for southeast Shanxi Province. Power spectrum analysis of the precipitation reconstruction showed remarkable 2.3, 3.2-3.3, 3.7-3.8, 6.3-6.7, 8.3-8.7 years cycles for the past 296 years, the 2.3 year cycle corresponds to the 'quasi-two-year pulsation', and the 3.2-3.3, 3.7-3.8 and 6.3-6.7 year cycles might have a certain relationship with ENSO. Results of the spatial correlation analysis showed that the reconstructed precipitation series could better represent precipitation changes in the study area.


Subject(s)
Pinus , Trees , Climate Change , Seasons
2.
Asian Pac J Trop Med ; 8(6): 468-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26194832

ABSTRACT

OBJECTIVE: To investigate the effect of BMSCs transplantation plus hyperbaric oxygen (HBO) on repair of rat SCI. METHODS: Seventy five male rats were divided randomly into five groups: sham, vehicle, BMSCs transplantation group, combination group, 15 rats in each group. Every week after the SCI onset, all animals were evaluated for behavior outcome by Basso-Beattle-Bresnahan (BBB) score and inclined plane test. Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset. HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. RESULTS: Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment. Results from histopathology showed favorable recovery from combination group than other treatment groups. The number of BrdU(+) in combination group were measureable more than transplantation group (P < 0.05). The greatest decrease in TNF-α, IL-1ß, IL-6, IFN-α determined by Elisa assay in combination group were evident too. CONCLUSIONS: BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI, and its combination with HBO has a synergistic effect.

3.
Brain Res ; 1606: 68-76, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25724144

ABSTRACT

The immunoreactive responses are a two-edged sword after spinal cord injury (SCI). Macrophages are the predominant inflammatory cells responsible for this response. However, the mechanism underlying the effects of HBOT on the immunomodulation following SCI is unclear now. The present study was performed to examine the effects of hyperbaric oxygen therapy (HBOT) on macrophage polarization after the rat compressive injury of the spinal cord. HBOT was associated with significant increases in IL-4 and IL-13 levels, and reductions in TNF-α and IFN-É£ levels. This was associated simultaneously with the levels of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased levels of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional recovery in the HBOT-transplanted group, which correlated with preserved axons and increased myelin sparing. Our results suggested that HBOT after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, which may further promote the axonal extension and functional recovery.


Subject(s)
Cell Polarity , Hyperbaric Oxygenation , Macrophages/physiology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/therapy , Animals , Axons/pathology , Cytokines/metabolism , Inflammation/metabolism , Locomotion , Macrophages/metabolism , Myelin Sheath/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...