Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(3): 121, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33628708

ABSTRACT

Iron is a critical micronutrient for growth and development of plants and its deficiency limiting the crop productivity. MicroRNAs (miRNAs) play vital roles in adaptation of plants to various nutrient deficiencies. However, the role of miRNAs and their target genes related to Fe-deficiency is limited. In this study, we identified Fe-deficiency-responsive miRNAs from citrus. In Fe-deficiency conditions, about 50 and 31 miRNAs were up-regulated and down-regulated, respectively. The differently expressed miRNAs might play critical roles in contributing the Fe-deficiency tolerance in citrus plants. The miRNAs-mediated Fe-deficiency tolerance in citrus plants might related to the enhanced stress tolerance by decreased expression of miR172; regulation of S homeostasis by decreased expression of miR395; inhibition of plant growth by increased expression of miR319 and miR477; regulation of Cu homeostasis as well as activation of Cu/Zn superoxide dismutase activity due to decreased expression of miR398 and miR408 and regulation of lignin accumulation by decreased expression of miR397 and miR408. The identified miRNAs in present study laid a foundation to understand the Fe-deficiency adaptive mechanisms in citrus plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02669-z.

2.
Int J Mol Sci ; 10(9): 4116-4136, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19865535

ABSTRACT

The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUE(p) = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUE(l) showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUE(P), PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.


Subject(s)
Phosphorus/metabolism , Seedlings/metabolism , Triticum/metabolism , Adaptation, Physiological , Breeding , Chromosome Mapping , Chromosomes, Plant , Dehydration , Droughts , Genes, Plant , Genetic Association Studies , Photosynthesis/genetics , Plant Transpiration/genetics , Quantitative Trait Loci , Seedlings/genetics , Stress, Physiological , Triticum/genetics
3.
Int J Biol Sci ; 4(2): 116-25, 2008 Apr 26.
Article in English | MEDLINE | ID: mdl-18463716

ABSTRACT

Serving as an important second messenger, calcium ion has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in cells in response to hormones, pathogens, light, gravity, and stress factors. Being a second messenger of paramount significance, calcium is required at almost all stages of plant growth and development, playing a fundamental role in regulating polar growth of cells and tissues and participating in plant adaptation to various stress factors. Many researches showed that calcium signals decoding elements are involved in ABA-induced stomatal closure and plant adaptation to drought, cold, salt and other abiotic stresses. Calcium channel proteins like AtTPC1 and TaTPC1 can regulate stomatal closure. Recently some new studies show that Ca(2+) is dissolved in water in the apoplast and transported primarily from root to shoot through the transpiration stream. The oscillating amplitudes of [Ca(2+)](o) and [Ca(2+)](i) are controlled by soil Ca(2+) concentrations and transpiration rates. Because leaf water use efficiency (WUE) is determined by stomatal closure and transpiration rate, so there may be a close relationship between Ca(2+) transporters and stomatal closure as well as WUE, which needs to be studied. The selection of varieties with better drought resistance and high WUE plays an increasing role in bio-watersaving in arid and semi-arid areas on the globe. The current paper reviews the relationship between calcium signals decoding elements and plant drought resistance as well as other abiotic stresses for further study.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Plants/metabolism , Calcium Channels/metabolism
4.
Colloids Surf B Biointerfaces ; 57(1): 1-7, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17287112

ABSTRACT

Water deficiency and lower fertilizer utilization efficiency are major constraints of productivity and yield stability. Improvements of crop water use efficiency (WUE) and nutrient use efficiency (NUE) is becoming an important objective in crop breeding. With the introduction of new physiological and biological approaches, we can better understand the mutual genetics mechanism of high use efficiency of water and nutrient. Much work has been done in past decades mainly including the interactions between different fertilizers and water influences on root characteristics and crop growth. Fertilizer quantity and form were regulated in order to improve crop WUE. The crop WUE and NUE shared the same increment tendency during evolution process; some genes associated with WUE and NUE have been precisely located and marked on the same chromosomes, some genes related to WUE and NUE have been cloned and transferred into wheat and rice and other plants, they can enhance water and nutrient use efficiency. The proteins transporting nutrient and water were identified such as some water channel proteins. The advance on the mechanism of higher water and nutrient use efficiency in crop was reviewed in this article, and it could provide some useful information for further research on WUE and NUE in crop.


Subject(s)
Nutritional Physiological Phenomena , Plant Physiological Phenomena , Plants/chemistry , Water/metabolism , Biological Evolution , Cloning, Molecular , Genetic Markers , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...