Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Plant Biol ; 56(8): 729-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24645852

ABSTRACT

Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Plant Proteins/metabolism , Plants/metabolism , Gene Expression Profiling
2.
J Ginseng Res ; 37(3): 361-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24198663

ABSTRACT

A lysine histidine transporter (LHT) cDNA was isolated and characterized from the roots of Panax ginseng, designated PgLHT. The cDNA is 1,865 bp with an open reading frame that codes for a protein with 449 amino acids and a calculated molecular mass of 50.6 kDa with a predicted isoelectric point of 8.87. Hydropathy analysis shows that PgLHT is an integral membrane protein with 9 putative membrane-spanning domains. Multiple sequence alignments show that PgLHT shares a high homology with other plant LHTs. The expression profile of the gene was investigated by real-time quantitative polymerase chain reaction during various chemical treatments. PgLHT was up-regulated in the presence of abscisic acid, salicylic acid, methyl jasmonate, NaCl, and amino acids. To further explore the function of PgLHT gene, full-length cDNA of PgLHT was introduced into P. ginseng by Agrobacterium rhizogenes A4. The overexpression of PgLHT in the hairy roots led to an obviously increase of biomass compared to the controls, and after addition of the amino acids, the overexpressed-PgLHT hairy roots grew more rapidly than untreated controls during early stage of the culture cycle. The results suggested that the PgLHT isolated from ginseng might have role in the environmental stresses and growth response.

3.
Plant Physiol Biochem ; 71: 203-11, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23968928

ABSTRACT

The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters is potentially involved in diverse biological processes. Currently, little is known about their actual physiological functions. A Panax ginseng PDR transporter gene (PgPDR1) was cloned and the cDNA has an open reading frame of 4344 bp. The deduced amino acid sequence contained the characteristic domains of PDR transporters: Walker A, Walker B, and ABC signature. Genomic DNA hybridization analysis indicated that one copy of PgPDR1 gene was present in P. ginseng. Subcellular localization showed that PgPDR1-GFP fusion protein was specifically localized in the cell membrane. Promoter region analysis revealed the presence of cis-acting elements, some of which are putatively involved in response to hormone, light and stress. To understand the functional roles of PgPDR1, we investigated the expression patterns of PgPDR1 in different tissues and under various conditions. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis showed that PgPDR1 was expressed at a high level in the roots and leaves compared to seeds and stems. The expression of PgPDR1 was up-regulated by salicylic acid (SA) or chilling, down-regulated by ABA, and regulated differently at transcript and protein levels by MeJA. These results suggest that PgPDR1 might be involved in responding to environmental stresses and hormones.


Subject(s)
Panax/drug effects , Panax/genetics , Plant Proteins/metabolism , Cloning, Molecular/methods , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Salts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...