Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nat Commun ; 13(1): 3234, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680924

ABSTRACT

Effectively imaging within volumetric scattering media is of great importance and challenging especially in macroscopic applications. Recent works have demonstrated the ability to image through scattering media or within the weak volumetric scattering media using spatial distribution or temporal characteristics of the scattered field. Here, we focus on imaging Lambertian objects embedded in highly scattering media, where signal photons are dramatically attenuated during propagation and highly coupled with background photons. We address these challenges by providing a time-to-space boundary migration model (BMM) of the scattered field to convert the scattered measurements in spectral form to the scene information in the temporal domain using all of the optical signals. The experiments are conducted under two typical scattering scenarios: 2D and 3D Lambertian objects embedded in the polyethylene foam and the fog, which demonstrate the effectiveness of the proposed algorithm. It outperforms related works including time gating in terms of reconstruction precision and scattering strength. Even though the proportion of signal photons is only 0.75%, Lambertian objects located at more than 25 transport mean free paths (TMFPs), corresponding to the round-trip scattering length of more than 50 TMFPs, can be reconstructed. Also, the proposed method provides low reconstruction complexity and millisecond-scale runtime, which significantly benefits its application.

3.
Opt Express ; 30(1): 138-145, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35201188

ABSTRACT

Manipulation of light energy flow within the tight focus not only is important to the fundamental study of light-matter interactions but also underpins significant practical applications. However, the coupling between the electric and the magnetic fields of a focused light beam sets a fundamental barrier for independent control of these field components, restricting the focal energy flow primarily in the axial direction. In this paper, a 4π microscopic configuration is theoretically proposed to untangle the tight relation between the electric field and the magnetic field in a subwavelength-scale focal voxel. By independently altering the amplitudes of different field components in the focal region, energy flow with three-dimensionally unlimited orientation and ultra-high orientation purity (more than 90%) can be generated. This result expands the flexibility of energy flow manipulations and holds great potential in nanophotonics such as light scattering and optical force at subwavelength dimensions.

4.
Opt Express ; 29(24): 39738-39754, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809331

ABSTRACT

In this article, a new type of Fourier spectrum-based novel look-up table (FS-NLUT) method is proposed for the faster generation of holographic video of three-dimensional (3-D) scenes. This proposed FS-NLUT method consists of principal frequency spectrums (PFSs) which are much smaller in size than the principal fringe patterns (PFPs) found in the conventional NLUT-based methods. This difference in size allows for the number of basic algebraic operations in the hologram generation process to be reduced significantly. In addition, the fully one-dimensional (1-D) calculation framework of the proposed method also allows for a significant reduction of overall hologram calculation time. In the experiments, the total number of basic algebraic operations needed for the proposed FS-NLUT method were found to be reduced by 81.23% when compared with that of the conventional 1-D NLUT method. In addition, the hologram calculation times of the proposed method, when implemented in the CPU and the GPU, were also found to be 60% and 66% faster than that of the conventional 1-D NLUT method, respectively. It was also confirmed that the proposed method implemented with two GPUs can generate a holographic video of a test 3-D scene in real-time (>24f/s).

5.
Light Sci Appl ; 10(1): 8, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33408323

ABSTRACT

Although photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.

6.
Opt Express ; 28(24): 35910-35926, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379697

ABSTRACT

A compact full-color electro-holographic three-dimensional (3-D) display with undersampled computer-generated holograms (US-CGHs) and oblique projection imaging (OPI) is proposed. For its realization, undersampling conditions of the CGH enabling the complete recovery of image information are derived, and the OPI-based longitudinal-to-lateral depth conversion (LTL-DC) scheme allowing the simple reconstruction of full-color images is also proposed. Three-color off-axis US-CGHs are generated with their center-shifted principle fringe patterns (CS-PFPs) of the novel look-up table (NLUT) method, where center-shifts are calculated with the derived undersampling conditions of the CGH based on the generalized sampling theorem, and then multiplexed into the color-multiplexed hologram (CMH). The CMH is loaded on a SLM (spatial light modulator) and reconstructed by being illuminated with a multi-wavelength light source, where an original full-color image is reconstructed being spatially separated from the other color-dispersed images on the projected image plane with the OPI-based LTL-DC process, which enables us to view the original full-color image just with a simple filter mask. Performance analysis and successful experiments with the test 3-D objects in motion confirm the feasibility of the proposed system.

7.
Opt Express ; 28(21): 31127-31139, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115094

ABSTRACT

The direct pickup of integral imaging typically needs to overcome limitations especially the restricted depth of field (DoF) under a lenslet array. In order to solve the problem, we design a motion parallax enhancing approach for three-dimensional (3-D) integral optical display only relying on a commercial Lytro camera. First, the non-uniform axial compression from the zoom lens of the Lytro camera is analyzed and experimentally investigated. Next, using depth slicing, locating and retargeting, the parallax of the integral optical display is significantly enhanced. Additionally, the displayed depth information can be presented in a uniform compression with the same proportion as the real scene even without the prior knowledge of the actual object distance. The experimental results prove the feasibility of the proposed method, which provides an efficient way for the acquisition of the elemental image array. Additionally, it is also a new attempt to expand the application scope of the Lytro camera from 2-D refocusing to the content acquisition for the integral display.

8.
Opt Express ; 27(22): 31942-31955, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684416

ABSTRACT

A method aiming at improving the performance of integral imaging (II) based Fresnel hologram is proposed, which is generated by using the intermediate view reconstruction (IVR). The conventional integral holograms are generally generated through Fourier transforming the elemental images (EI) of II into hogels. However, a trade-off between the angular resolution and the spatial resolution of II is inevitable within the generation of integral hologram. The IVR is introduced to enhance the angular spectrum of II-based Fresnel hologram while keeping a compact image size and being free from moving the lenslet array. Multiple elemental image array (EIA) sequences are generated with the IVR and transformed to the corresponding holograms. All the generated hologram sequences shift depending on the relative position of the virtual lens array and are added together to synthesize the Fresnel hologram with a high angular spectrum. The synthesized hologram can reconstruct the 3D image with the combined light fields of all the integral hologram sequences. Finally, both the simulation with multiple objects and experiments of real 3D object are numerically and optically conducted. The high matching results among them confirm this work a better performance over the conventional methods.

9.
Opt Express ; 27(20): 29139-29157, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684653

ABSTRACT

A spherical hologram-based three-dimensional rotational-motion compensation (SH-3DRMC) method is proposed for the accelerated generation of holographic videos of a three-dimensional (3-D) object moving in space along the arbitrary trajectory with many locally-different curvatures. All those 3-D rotational motions of the object made on each arc can be compensated just by rotating their local spherical holograms along the spherical surfaces matched with the object's moving trajectory using the estimated rotation-axes and angles, which enables a massive reduction of computational complexity of the conventional hologram-generation algorithm and results in an accelerated calculation of holographic videos. Experiments with a test video show that the average calculation times of the conventional NLUT, WRP and 1-D NLUT methods employing the proposed SH-3DRMC scheme have been noticeably reduced by 34.75%, 41.37% and 31.64%, respectively, in comparison with those of their original methods. These good experimental results confirm the feasibility of the proposed system.

10.
Opt Express ; 27(11): 15926-15942, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163782

ABSTRACT

A single spatial-light-modulator (SLM) full-color holographic 3-D video display based on image and frequency-shift multiplexing (IFSM) is proposed. In the frequency-shift multiplexing (FSM), three-color holograms are multiplied with their respective phase factors for shifted-separations of their corresponding frequency-spectrums on the Fourier plane. This FSM process, however, causes three-color images to be reconstructed at the center-shifted locations depending on their multiplied phase factors. Center-shifts of those color images due to the FSM can be balanced out just by generation of three-color holograms whose centers are pre-shifted to the opposite directions to those of the image shifts with the novel-look-up-table (NLUT) based on its shift-invariance property, which is called image-shift multiplexing (ISM). These image and frequency-shifted holograms are then multiplexed into a single color-multiplexed hologram and loaded on the SLM, and from which a full-color 3-D image can be reconstructed on the optical 4-f lens system without any color dispersion just by employing a simple pinhole filter mask. Fourier-optical analysis and experiments with 3-D objects in motion confirm the feasibility of the proposed system.

11.
Opt Express ; 27(9): 12673-12691, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052806

ABSTRACT

A full-scale one-dimensional novel-look-up-table (1-D NLUT) method enabling faster generation of holographic videos with the minimum memory capacity is proposed. Only a pair of half-sized 1-D baseline and depth-compensating principal-fringe-patterns (PFPs) is pre-calculated and stored based on the concentric-symmetry property of the PFP, and from which a set of half-sized 1-D PFPs for all depth planes are generated based on its thin-lens property, which enables minimization of the required memory size down to a few KB regardless of the number of depth planes. Moreover, all those hologram calculations are fully one-dimensionally performed with a set of half-sized 1-D PFPs based on its shift invariance property, which also allows minimization of its overall hologram calculation time. From experiments with test videos, the proposed method has been found to have the shortest hologram calculation time even with the least memory in comparison with several modified versions of the conventional NLUT and LUT methods, which confirms its feasibility.

12.
Opt Express ; 26(16): 21279-21300, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119433

ABSTRACT

A new curved hologram-based rotational-motion compensation (CH-RMC) method is proposed for accelerated generation of holographic videos of 3-D objects moving on the random path with many locally different arcs. All of those rotational motions of the object made on each arc can be compensated, just by rotating their local curved holograms along the curving surfaces matched with the object's moving trajectory without any additional calculation process, which results in great enhancements of the computational speed of the conventional hologram-generation algorithms. Experiments with a test video scenario reveal that average numbers of calculated object points (ANCOPs) and average calculation times for one frame (ACTs) of the CH-RMC-based ray-tracing, wavefront-recording-plane and novel- look-up-table methods have been found to be reduced by 73.10%, 73.84%, 73.34%, and 68.75%, 50.82%, 66.59%, respectively, in comparison with those of their original methods. In addition, successful reconstructions of 3-D scenes from those holographic videos confirm the feasibility of the proposed system.

SELECTION OF CITATIONS
SEARCH DETAIL
...