Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Medicina (Kaunas) ; 60(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674283

ABSTRACT

Background and Objectives: Drug resistant epilepsy (DRE) is a major hurdle in epilepsy, which hinders clinical care, patients' management and treatment outcomes. DRE may partially result from genetic variants that alter proteins responsible for drug targets and drug transporters in the brain. We aimed to examine the relationship between SCN1A, GABRA1 and ABCB1 polymorphism and drug response in epilepsy children in Vietnam. Materials and Methods: In total, 213 children diagnosed with epilepsy were recruited in this study (101 were drug responsive and 112 were drug resistant). Sanger sequencing had been performed in order to detect six single nucleotide polymorphisms (SNPs) belonging to SCN1A (rs2298771, rs3812718, rs10188577), GABRA1 (rs2279020) and ABCB1 (rs1128503, rs1045642) in study group. The link between SNPs and drug response status was examined by the Chi-squared test or the Fisher's exact test. Results: Among six investigated SNPs, two SNPs showed significant difference between the responsive and the resistant group. Among those, heterozygous genotype of SCN1A rs2298771 (AG) were at higher frequency in the resistant patients compared with responsive patients, playing as risk factor of refractory epilepsy. Conversely, the heterozygous genotype of SCN1A rs3812718 (CT) was significantly lower in the resistant compared with the responsive group. No significant association was found between the remaining four SNPs and drug response. Conclusions: Our study demonstrated a significant association between the SCN1A genetic polymorphism which increased risk of drug-resistant epilepsy in Vietnamese epileptic children. This important finding further supports the underlying molecular mechanisms of SCN1A genetic variants in the pathogenesis of drug-resistant epilepsy in children.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Anticonvulsants , Epilepsy , NAV1.1 Voltage-Gated Sodium Channel , Polymorphism, Single Nucleotide , Receptors, GABA-A , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Vietnam , Male , Female , Child , ATP Binding Cassette Transporter, Subfamily B/genetics , Child, Preschool , Epilepsy/genetics , Epilepsy/drug therapy , Receptors, GABA-A/genetics , Anticonvulsants/therapeutic use , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/drug therapy , Infant , Genotype , Adolescent , Southeast Asian People
2.
Phys Eng Sci Med ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329662

ABSTRACT

Fetal electrocardiogram (fECG) monitoring is crucial for assessing fetal condition during pregnancy. However, current fECG extraction algorithms are not suitable for wearable devices due to their high computational cost and multi-channel signal requirement. The paper introduces a novel and efficient algorithm called Adaptive Improved Permutation Entropy (AIPE), which can extract fetal QRS from a single-channel abdominal ECG (aECG). The proposed algorithm is robust and computationally efficient, making it a reliable and effective solution for wearable devices. To evaluate the performance of the proposed algorithm, we utilized our clinical data obtained from a pilot study with 10 subjects, each recording lasting 20 min. Additionally, data from the PhysioNet 2013 Challenge bank with labeled QRS complex annotations were simulated. The proposed methodology demonstrates an average positive predictive value ([Formula: see text]) of 91.0227%, sensitivity (Se) of 90.4726%, and F1 score of 90.6525% from the PhysioNet 2013 Challenge bank, outperforming other methods. The results suggest that AIPE could enable continuous home-based monitoring of unborn babies, even when mothers are not engaging in any hard physical activities.

3.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339679

ABSTRACT

Electrodeposited amorphous hydrated iridium oxide (IrOx) is a promising material for pH sensing due to its high sensitivity and the ease of fabrication. However, durability and variability continue to restrict the sensor's effectiveness. Variation in probe films can be seen in both performance and fabrication, but it has been found that performance variation can be controlled with potentiostatic conditioning (PC). To make proper use of this technique, the morphological and chemical changes affecting the conditioning process must be understood. Here, a thorough study of this material, after undergoing PC in a pH-sensing-relevant potential regime, was conducted by voltammetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Fitting of XPS data was performed, guided by raw trends in survey scans, core orbitals, and valence spectra, both XPS and UPS. The findings indicate that the PC process can repeatably control and conform performance and surface bonding to desired calibrations and distributions, respectively; PC was able to reduce sensitivity and offset ranges to as low as ±0.7 mV/pH and ±0.008 V, respectively, and repeat bonding distributions over ~2 months of sample preparation. Both Ir/O atomic ratios (shifting from 4:1 to over 4.5:1) and fitted components assigned hydroxide or oxide states based on the literature (low-voltage spectra being almost entirely with suggested hydroxide components, and high-voltage spectra almost entirely with suggested oxide components) trend across the polarization range. Self-consistent valence, core orbital, and survey quantitative trends point to a likely mechanism of ligand conversion from hydroxide to oxide, suggesting that the conditioning process enforces specific state mixtures that include both theoretical Ir(III) and Ir(IV) species, and raising the conditioning potential alters the surface species from an assumed mixture of Ir species to more oxidized Ir species.

4.
PLoS One ; 18(11): e0294322, 2023.
Article in English | MEDLINE | ID: mdl-37976248

ABSTRACT

Chronic methamphetamine use, a widespread drug epidemic, has been associated with cardiac morphological and electrical remodeling, leading to the development of numerous cardiovascular diseases. While methamphetamine has been documented to induce arrhythmia, most results originate from clinical trials from users who experienced different durations of methamphetamine abuse, providing no documentation on the use of methamphetamine in standardized settings. Additionally, the underlying molecular mechanism on how methamphetamine affects the cardiovascular system remains elusive. A relationship was sought between cardiotoxicity and arrhythmia with associated methamphetamine abuse in zebrafish to identify and to understand the adverse cardiac symptoms associated with methamphetamine. Zebrafish were first treated with methamphetamine 3 times a week over a 2-week duration. Immediately after treatment, zebrafish underwent electrocardiogram (ECG) measurement using an in-house developed acquisition system for electrophysiological analysis. Subsequent analyses of cAMP expression and Ca2+ regulation in zebrafish cardiomyocytes were conducted. cAMP is vital to development of myocardial fibrosis and arrhythmia, prominent symptoms in the development of cardiovascular diseases. Ca2+ dysregulation is also a factor in inducing arrhythmias. During the first week of treatment, zebrafish that were administered with methamphetamine displayed a decrease in heart rate, which persisted throughout the second week and remained significantly lower than the heart rate of untreated fish. Results also indicate an increased heart rate variability during the early stage of treatment followed by a decrease in the late stage for methamphetamine-treated fish over the duration of the experiment, suggesting a biphasic response to methamphetamine exposure. Methamphetamine-treated fish also exhibited reduced QTc intervals throughout the experiment. Results from the cAMP and Ca2+ assays demonstrate that cAMP was upregulated and Ca2+ was dysregulated in response to methamphetamine treatment. Collagenic assays indicated significant fibrotic response to methamphetamine treatment. These results provide potential insight into the role of methamphetamine in the development of fibrosis and arrhythmia due to downstream effectors of cAMP.


Subject(s)
Cardiovascular Diseases , Methamphetamine , Animals , Methamphetamine/toxicity , Zebrafish , Cardiovascular Diseases/chemically induced , Calcium/therapeutic use , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/drug therapy
5.
Lancet Infect Dis ; 23(9): 1085-1094, 2023 09.
Article in English | MEDLINE | ID: mdl-37230105

ABSTRACT

BACKGROUND: In previous trials, point-of-care testing of C-reactive protein (CRP) concentrations safely reduced antibiotic use in non-severe acute respiratory infections in primary care. However, these trials were done in a research-oriented context with close support from research staff, which could have influenced prescribing practices. To better inform the potential for scaling up point-of-care testing of CRP in respiratory infections, we aimed to do a pragmatic trial of the intervention in a routine care setting. METHODS: We did a pragmatic, cluster-randomised controlled trial at 48 commune health centres in Viet Nam between June 1, 2020, and May 12, 2021. Eligible centres served populations of more than 3000 people, handled 10-40 respiratory infections per week, had licensed prescribers on site, and maintained electronic patient databases. Centres were randomly allocated (1:1) to provide point-of-care CRP testing plus routine care or routine care only. Randomisation was stratified by district and by baseline prescription level (ie, the proportion of patients with suspected acute respiratory infections to whom antibiotics were prescribed in 2019). Eligible patients were aged 1-65 years and visiting the commune health centre for a suspected acute respiratory infection with at least one focal sign or symptom and symptoms lasting less than 7 days. The primary endpoint was the proportion of patients prescribed an antibiotic at first attendance in the intention-to-treat population. The per-protocol analysis included only people who underwent CRP testing. Secondary safety outcomes included time to resolution of symptoms and frequency of hospitalisation. This trial is registered with ClinicalTrials.gov, NCT03855215. FINDINGS: 48 commune health centres were enrolled and randomly assigned, 24 to the intervention group (n=18 621 patients) and 24 to the control group (n=21 235). 17 345 (93·1%) patients in the intervention group were prescribed antibiotics, compared with 20 860 (98·2%) in the control group (adjusted relative risk 0·83 [95% CI 0·66-0·93]). Only 2606 (14%) of 18 621 patients in the intervention group underwent CRP testing and were included in the per-protocol analysis. When analyses were restricted to this population, larger reductions in prescribing were noted in the intervention group compared with the control group (adjusted relative risk 0·64 [95% CI 0·60-0·70]). Time to resolution of symptoms (hazard ratio 0·70 [95% CI 0·39-1·27]) and frequency of hospitalisation (nine in the intervention group vs 17 in the control group; adjusted relative risk 0·52 [95% CI 0·23-1·17]) did not differ between groups. INTERPRETATION: Use of point-of-care CRP testing efficaciously reduced prescription of antibiotics in patients with non-severe acute respiratory infections in primary health care in Viet Nam without compromising patient recovery. The low uptake of CRP testing suggests that barriers to implementation and compliance need to be addressed before scale-up of the intervention. FUNDING: Australian Government, UK Government, and the Foundation for Innovative New Diagnostics.


Subject(s)
Anti-Bacterial Agents , C-Reactive Protein , Point-of-Care Testing , Respiratory Tract Infections , Humans , Anti-Bacterial Agents/therapeutic use , Australia , C-Reactive Protein/analysis , Primary Health Care , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Southeast Asian People , Vietnam/epidemiology , Cluster Analysis
6.
Analyst ; 148(9): 1912-1929, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36928639

ABSTRACT

Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Data Science , Electrodes , Cell Differentiation , Electric Impedance , Dielectric Spectroscopy/methods , Microfluidic Analytical Techniques/methods
7.
Lancet Reg Health West Pac ; 30: 100668, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36748068

ABSTRACT

Background: Drug outlets are a vital first point of healthcare contact in low- and middle-income countries (LMICs), but they are often poorly regulated and counter staff may be unqualified to provide advice. This introduces the risk of easy access to potentially harmful products, including unnecessary antimicrobials. Over-the-counter antimicrobial sales are a major driver of antimicrobial resistance (AMR) in LMICs. We aimed to investigate the distribution of different types of drug outlets and their association with socio-economic factors. Methods: We mapped the location of drug outlets in 40 randomly selected geographic clusters, covering a population of 1.96 million people. Data including type of drug outlet, context, operating hours, chief pharmacist name and qualification, and business registration identification were collected from mandatory public signage. We describe the density of drug outlets and levels of staff qualifications in relation to population density, urban vs rural areas, and poverty indices. Findings: We characterised 1972 drug outlets. In the study area, there was an average of 102 outlets/per 100,000 population, compared to the global average of 25. Predictably, population density was correlated with the density of drug outlets. We found that drug outlets were less accessible in rural vs urban areas, and for the poor. Furthermore, for these populations, degree-qualified pharmacists were less accessible and public signage frequently lacked mandatory registration information. Interpretation: Drug outlets appear over-supplied in Vietnam compared to other countries. Unregistered outlets and outlets without degree-qualified pharmacists are prevalent, especially in poor and rural areas, posing a risk for inappropriate supply of antimicrobials, which may contribute to AMR, and raises questions of equitable healthcare access. Funding: This study was funded by a grant from the Australian Department of Foreign Affairs and Trade.

8.
Neurobiol Sleep Circadian Rhythms ; 14: 100087, 2023 May.
Article in English | MEDLINE | ID: mdl-36712905

ABSTRACT

In mammals, sleep duration is highest in the early postnatal period of life and is critical for shaping neural circuits that control the development of complex behaviors. The prairie vole is a wild, highly social rodent that serves as a unique model for the study of complex, species-typical social behaviors. Previous work in our laboratory has found that early life sleep disruption (ELSD) in prairie voles during a sensitive window of postnatal development leads to long lasting changes in social and cognitive behaviors as well as structural changes in excitatory and inhibitory neural circuits in the brain. However, it is currently unknown how later sleep is impacted by ELSD, both shortly after ELSD and over the long term. Therefore, the aim of this study was to describe the effects of ELSD on later life sleep, compared to sleep in normally developing prairie voles. First, we conducted tethered electroencephalogram/electromyogram (EEG/EMG) recordings in juvenile prairie voles undergoing ELSD, compared to Control conditions. Second, we conducted 24 h of home cage tethered EEG/EMG recordings in either adolescent or adult male and female prairie voles that had previously undergone ELSD or Control conditions as juveniles. We found that, as adults, male ELSD prairie voles showed persistently lower REM sleep duration and female ELSD prairie voles showed persistently higher NREM sleep duration compared to Controls, but no other sleep parameters differed. We concluded that 1) persistent effects of ELSD on sleep into adulthood may contribute to the social and cognitive deficits observed in adult voles, and 2) sleep disruption early in life can influence later sleep patterns in adulthood.

9.
Gene Expr Patterns ; 47: 119289, 2023 03.
Article in English | MEDLINE | ID: mdl-36574537

ABSTRACT

The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster R-CNN), Region-based Fully Convolutional Networks (R-FCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hemangiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver.


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging
10.
Biosens Bioelectron ; 222: 114941, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36455372

ABSTRACT

Real-time tracking of neurotransmitter levels in vivo has been technically challenging due to the low spatiotemporal resolution of current methods. Since the imbalance of cortical excitation/inhibition (E:I) ratios are associated with a variety of neurological disorders, accurate monitoring of excitatory and inhibitory neurotransmitter levels is crucial for investigating the underlying neural mechanisms of these conditions. Specifically, levels of the excitatory neurotransmitter L-glutamate, and the inhibitory neurotransmitter GABA, are assumed to play critical roles in the E:I balance. Therefore, in this work, a flexible electrochemical microsensor is developed for real-time simultaneous detection of L-glutamate and GABA. The flexible polyimide substrate was used for easier handling during implantation and measurement, along with less brain damage. Further, by electrochemically depositing Pt-black nanostructures on the sensor's surface, the active surface area was enhanced for higher sensitivity. This dual neurotransmitter sensor probe was validated under various settings for its performance, including in vitro, ex vivo tests with glutamatergic neuronal cells and in vivo test with anesthetized rats. Additionally, the sensor's performance has been further investigated in terms of longevity and biocompatibility. Overall, our dual L-glutamate:GABA sensor microprobe has its unique features to enable accurate, real-time, and long-term monitoring of the E:I balance in vivo. Thus, this new tool should aid investigations of neural mechanisms of normal brain function and various neurological disorders.


Subject(s)
Biosensing Techniques , Glutamic Acid , Rats , Animals , Brain , Neurotransmitter Agents , gamma-Aminobutyric Acid
11.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502248

ABSTRACT

Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinogram (ERG), and electromyogram (EMG), there has been a lack of exploration in the use of state-of-the-art DL models for EEG-based subject identification tasks owing to the high variability in EEG features across sessions for an individual subject. In this paper, we explore the use of state-of-the-art DL models such as ResNet, Inception, and EEGNet to realize EEG-based biometrics on the BED dataset, which contains EEG recordings from 21 individuals. We obtain promising results with an accuracy of 63.21%, 70.18%, and 86.74% for Resnet, Inception, and EEGNet, respectively, while the previous best effort reported accuracy of 83.51%. We also demonstrate the capabilities of these models to perform EEG biometric tasks in real-time by developing a portable, low-cost, real-time Raspberry Pi-based system that integrates all the necessary steps of subject identification from the acquisition of the EEG signals to the prediction of identity while other existing systems incorporate only parts of the whole system.


Subject(s)
Biometric Identification , Electroencephalography , Humans , Electroencephalography/methods , Biometric Identification/methods , Electrocardiography , Electromyography , Biometry
12.
Elife ; 112022 Oct 18.
Article in English | MEDLINE | ID: mdl-36255053

ABSTRACT

Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.


Subject(s)
Sick Sinus Syndrome , Zebrafish , Mice , Animals , Humans , Sick Sinus Syndrome/genetics , Zebrafish/genetics , Zebrafish/metabolism , Sinoatrial Node/metabolism , Phenotype , Electrocardiography/adverse effects , Arrhythmias, Cardiac/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Nerve Tissue Proteins/metabolism , Molecular Chaperones/metabolism , HSP40 Heat-Shock Proteins/genetics
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3546-3549, 2022 07.
Article in English | MEDLINE | ID: mdl-36085737

ABSTRACT

Machine learning and deep learning algorithms have paved the way for improved analysis of biomedical data which has led to a better understanding of various biological conditions. However, one major hindrance to leveraging the potential of machine learning models is the requirement of huge datasets. In the biomedical domain, this becomes extremely difficult due to uncertainties in collecting high-quality data as well as, in the case of human subjects data, privacy. Further, when it comes to biomedical data, inter-subject variability has been a long-entrenched issue. The data obtained from different individuals will differ to a considerable extent that it becomes difficult to find population differences in small datasets. In this work, we investigate the use of label alignment techniques on an EEG-based Traumatic Brain Injury (TBI) classification task to overcome inter-subject variability, thereby increasing the classification accuracy. We show an increase in accuracy of around 6% in some cases as compared to our previous results. In the end, we also propose a methodology to incorporate TBI data from a different species (e.g., mice) after domain adaptation, which might further improve the performance by increasing the amount of training datasets available for the classification model.


Subject(s)
Brain Injuries, Traumatic , Machine Learning , Algorithms , Animals , Brain Injuries, Traumatic/diagnosis , Electroencephalography/methods , Humans , Mice
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2005-2008, 2022 07.
Article in English | MEDLINE | ID: mdl-36086399

ABSTRACT

Monitoring of electrocardiogram (ECG) provides vital information as well as any cardiovascular anomalies. Recent advances in the technology of wearable electronics have enabled compact devices to acquire personal physiological signals in the home setting; however, signals are usually contaminated with high level noise. Thus, an efficient ECG filtering scheme is a dire need. In this paper, a novel method using Ensemble Kalman Filter (EnKF) is developed for denoising ECG signals. We also intensively explore various filtering algorithms, including Savitzky-Golay (SG) filter, Ensemble Empirical mode decomposition (EEMD), Normalized Least-Mean-Square (NLMS), Recursive least squares (RLS) filter, Total variation denoising (TVD), Wavelet and extended Kalman filter (EKF) for comparison. Data from the MIT-BIH Noise Stress Test database were used. The proposed methodology shows the average signal to noise ratio (SNR) of 10.96, the Percentage Root Difference of 150.45, and the correlation coefficient of 0.959 from the modified MIT-BIH database with added motion artifacts.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Electrocardiography/methods , Signal-To-Noise Ratio
15.
iScience ; 25(9): 104876, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36034231

ABSTRACT

In vivo quantitative assessment of structural and functional biomarkers is essential for characterizing the pathophysiology of congenital disorders. In this regard, fixed tissue analysis has offered revolutionary insights into the underlying cellular architecture. However, histological analysis faces major drawbacks with respect to lack of spatiotemporal sampling and tissue artifacts during sample preparation. This study demonstrates the potential of light sheet fluorescence microscopy (LSFM) as a non-invasive, 4D (3days + time) optical sectioning tool for revealing cardiac mechano-transduction in zebrafish. Furthermore, we have described the utility of a scale and size-invariant feature detector, for analyzing individual morphology of fused cardiomyocyte nuclei and characterizing zebrafish ventricular contractility.

16.
Sensors (Basel) ; 22(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890880

ABSTRACT

Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.


Subject(s)
Biosensing Techniques , Metabolic Diseases , Biomarkers , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Metabolic Diseases/diagnosis
17.
Biosens Bioelectron ; 210: 114292, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35490628

ABSTRACT

Simultaneous monitoring of electrocardiogram (ECG) and electroencephalogram (EEG) in studied animal models requires innovative engineering techniques that can capture minute physiological changes. However, this is often administered with a bulky and/or invasive system that may cause discomfort to animals and signal distortions. Here, we develop an integrated bioelectronic sensing system to provide simultaneous recordings of ECG and EEG in real-time for Xenopus laevis. The microelectrode array (MEA) membrane and the distinct anatomy of Xenopus offer noninvasive multi-modal electrophysiological monitoring with favorable spatial resolution. The system was validated under different environmental conditions, including drug exposure and temperature changes. Under the exposure of Pentylenetetrazol (PTZ), an epilepsy-inducing drug, clear ECG and EEG alterations, including frequent ictal and interictal EEG events, 30 dB average EEG amplitude elevations, abnormal ECG morphology, and heart rate changes, were observed. Furthermore, the ECG and EEG were monitored and analyzed under different temperatures. A decrease in relative power of delta band was observed when cold environment was brought about, in contrast to an increase in relative power of other higher frequency bands while the ECG remained stable. Overall, the real-time electrophysiology monitoring system using the Xenopus model holds potential for many applications in drug screening and remote environmental monitoring.


Subject(s)
Biosensing Techniques , Animals , Electrocardiography/methods , Electroencephalography/methods , Heart , Microelectrodes , Xenopus laevis
18.
Sensors (Basel) ; 22(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35408402

ABSTRACT

Fetal electrocardiogram (fECG) assessment is essential throughout pregnancy to monitor the wellbeing and development of the fetus, and to possibly diagnose potential congenital heart defects. Due to the high noise incorporated in the abdominal ECG (aECG) signals, the extraction of fECG has been challenging. And it is even a lot more difficult for fECG extraction if only one channel of aECG is provided, i.e., in a compact patch device. In this paper, we propose a novel algorithm based on the Ensemble Kalman filter (EnKF) for non-invasive fECG extraction from a single-channel aECG signal. To assess the performance of the proposed algorithm, we used our own clinical data, obtained from a pilot study with 10 subjects each of 20 min recording, and data from the PhysioNet 2013 Challenge bank with labeled QRS complex annotations. The proposed methodology shows the average positive predictive value (PPV) of 97.59%, sensitivity (SE) of 96.91%, and F1-score of 97.25% from the PhysioNet 2013 Challenge bank. Our results also indicate that the proposed algorithm is reliable and effective, and it outperforms the recently proposed extended Kalman filter (EKF) based algorithm.


Subject(s)
Mothers , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac , Electrocardiography/methods , Female , Fetal Monitoring/methods , Fetus , Humans , Pilot Projects , Pregnancy
19.
Sensors (Basel) ; 22(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35336553

ABSTRACT

Detection of bacterial pathogens is significant in the fields of food safety, medicine, and public health, just to name a few. If bacterial pathogens are not properly identified and treated promptly, they can lead to morbidity and mortality, also possibly contribute to antimicrobial resistance. Current bacterial detection methodologies rely solely on laboratory-based techniques, which are limited by long turnaround detection times, expensive costs, and risks of inadequate accuracy; also, the work requires trained specialists. Here, we describe a cost-effective and portable 3D-printed electrochemical biosensor that facilitates rapid detection of certain Escherichia coli (E. coli) strains (DH5α, BL21, TOP10, and JM109) within 15 min using 500 µL of sample, and costs only USD 2.50 per test. The sensor displayed an excellent limit of detection (LOD) of 53 cfu, limit of quantification (LOQ) of 270 cfu, and showed cross-reactivity with strains BL21 and JM109 due to shared epitopes. This advantageous diagnostic device is a strong candidate for frequent testing at point of care; it also has application in various fields and industries where pathogen detection is of interest.


Subject(s)
Biosensing Techniques , Escherichia coli , Bacteria , Biosensing Techniques/methods , Limit of Detection , Printing, Three-Dimensional
20.
Front Physiol ; 13: 819767, 2022.
Article in English | MEDLINE | ID: mdl-35283767

ABSTRACT

In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...