Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(1): 746-754, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34985244

ABSTRACT

The development of flexible electronic skins with high performance and multifunctional sensing capabilities is of great significance for applications ranging from healthcare monitoring to artificial intelligence. To mimic and surpass the high-gauge-factor sensing properties of human skin, structure design and appropriate material selection of sensors are both essentially required. Here, we present an efficient, low-cost fabrication strategy to construct an ultra-highly sensitive, flexible pressure sensor by embedding the aligned nickel-coated carbon fibers (NICFs) in a polydimethylsiloxane (PDMS) substrate. Our design substantially contributes to ultrahigh sensitivity through the parallel circuit formed by aligned NICFs as well as surface spinosum microstructure molded by sandpaper. As a result, the sensor exhibits excellent sensitivity (15 525 kPa-1), a fast response time (30 ms), and good stability over 3000 loading-unloading cycles. Furthermore, these superior sensing properties trigger applications in water quality and wave monitoring in conjunction with mechanical flexibility and robustness. As a precedent for adjusting the sensitivities of the sensor, the NICFs/PDMS sensor provides a promising method for multiscenario healthcare monitoring, multiscale pressure spatial distribution, and human-machine interfacing.


Subject(s)
Artificial Intelligence , Wearable Electronic Devices , Humans , Electric Conductivity , Dimethylpolysiloxanes/chemistry
2.
ACS Appl Mater Interfaces ; 13(8): 10388-10396, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33601883

ABSTRACT

Flexible pressure sensors have attracted intense attention because of their widespread applications in electronic skin, human-machine interfaces, and healthcare monitoring. Conductive porous structures are always utilized as active layers to improve the sensor sensitivities. However, flexible pressure sensors derived from traditional foaming techniques have limited structure designability. Besides, random pore distribution causes difference in structure and signal repeatability between different samples even in one batch, therefore limiting the batch production capabilities. Herein, we introduce a structure designable lattice structure pressure sensor (LPS) produced by bottom-up digital light processing (DLP) 3D printing technique, which is capable of efficiently producing 55 high fidelity lattice structure models in 30 min. The LPS shows high sensitivity (1.02 kPa-1) with superior linearity over a wide pressure range (0.7 Pa to 160 kPa). By adjusting the design parameters such as lattice type and layer thickness, the electrical sensitivities and mechanical properties of LPS can be accurately controlled. In addition, the LPS endures up to 60000 compression cycles (at 10 kPa) without any obvious electrical signal degradation. This benefits from the firm carbon nanotubes (CNTs) coating derived from high-energy ultrasonic probe and the subsequent thermal curing process of UV-heat dual-curing photocurable resin. For practical applications, the LPS is used for real time pulse monitoring, voice recognition and Morse code communication. Furthermore, the LPS is also integrated to make a flexible 4 × 4 sensor arrays for detecting spatial pressure distribution and a flexible insole for foot pressure monitoring.

3.
ACS Nano ; 14(8): 9605-9612, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32692150

ABSTRACT

Skin sensors are of paramount importance for flexible wearable electronics, which are active in medical diagnosis and healthcare monitoring. Ultrahigh sensitivity, large measuring range, and high skin conformability are highly desirable for skin sensors. Here, an ultrathin flexible piezoresistive sensor with high sensitivity and wide detection range is reported based on hierarchical nanonetwork structured pressure-sensitive material and nanonetwork electrodes. The hierarchical nanonetwork material is composed of silver nanowires (Ag NWs), graphene (GR), and polyamide nanofibers (PANFs). Among them, Ag NWs are evenly interspersed in a PANFs network, forming conductive pathways. Also, GR acts as bridges of crossed Ag NWs. The hierarchical nanonetwork structure and GR bridges of the pressure-sensitive material enable the ultrahigh sensitivity for the pressure sensor. More specifically, the sensitivity of 134 kPa-1 (0-1.5 kPa) and the low detection of 3.7 Pa are achieved for the pressure sensor. Besides, the nanofibers act as a backbone, which provides effective protection for Ag NWs and GR as pressure is applied. Hence, the pressure sensor possesses an excellent durability (>8000 cycles) and wide detection range (>75 kPa). Additionally, ultrathin property (7 µm) and nanonetwork structure provide high skin conformability for the pressure sensor. These superior performances lay a foundation for the application of pressure sensors in physiological signal monitoring and pressure spatial distribution detection.


Subject(s)
Graphite , Nanofibers , Nanowires , Wearable Electronic Devices , Pressure
4.
Nanoscale ; 12(30): 16053-16062, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32725033

ABSTRACT

Stretchable electrodes have a crucial impact on the development of flexible electronic systems. Most conventionally blended nanocomposite electrodes are incapable of achieving high stretchability, breathability, or durability. In this work, a highly conductive, breathable, and stretchable epidermal electrode (SEE) is demonstrated by designing a hierarchically interactive nano-network that is composed of elastic polymer nano-fibers and multi-level silver nano-wires (AgNWs). The elastic polymer nano-fibers act as a continuous scaffold, and multi-level AgNWs embedded in the nano-fibers form branched conductive pathways. This structure enables high conductivity of the SEE at 4800 S cm-1 (at a significantly low AgNW content of 1.59 vt%), with high stretchability and excellent durability. For example, the SEE remained conductive even at a high strain of 500%, and it also maintained its initial resistance even after 30 000 cycles of strain at 50% or being washed with water for 100 000 cycles. The SEE was prepared by a facile in situ nonequilibrium fabrication process, and can easily be produced into an elastic circuit on a large scale, which provides a foundation for integrated and multifunctional electronic skins. The SEE possesses superior mechanical conformability and permeability of gas and liquid, and therefore, it was successfully applied in measuring electrocardiogram signals and thermal therapy, and exhibited highly robust and comfortable performances even while being washed with water or undergoing complex deformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...