Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994945

ABSTRACT

Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.


Subject(s)
Spermatogenesis , Tretinoin , Male , Spermatogenesis/drug effects , Tretinoin/metabolism , Tretinoin/pharmacology , Humans , Animals , Reproduction/drug effects , Testis/metabolism , Testis/drug effects , Signal Transduction/drug effects , Infertility, Male/metabolism , Spermatozoa/metabolism , Spermatozoa/drug effects
2.
Antimicrob Resist Infect Control ; 9(1): 153, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32962731

ABSTRACT

BACKGROUND: A considerable proportion of patients hospitalized with coronavirus disease 2019 (COVID-19) acquired secondary bacterial infections (SBIs). The etiology and antimicrobial resistance of bacteria were reported and used to provide a theoretical basis for appropriate infection therapy. METHODS: This retrospective study reviewed electronic medical records of all the patients hospitalized with COVID-19 in the Wuhan Union Hospital between January 27 and March 17, 2020. According to the inclusion and exclusion criteria, patients who acquired SBIs were enrolled. Demographic, clinical course, etiology, and antimicrobial resistance data of the SBIs were collected. Outcomes were also compared between patients who were classified as severe and critical on admission. RESULTS: Among 1495 patients hospitalized with COVID-19, 102 (6.8%) patients had acquired SBIs, and almost half of them (49.0%, 50/102) died during hospitalization. Compared with severe patients, critical patients had a higher chance of SBIs. Among the 159 strains of bacteria isolated from the SBIs, 136 strains (85.5%) were Gram-negative bacteria. The top three bacteria of SBIs were A. baumannii (35.8%, 57/159), K. pneumoniae (30.8%, 49/159), and S. maltophilia (6.3%, 10/159). The isolation rates of carbapenem-resistant A. baumannii and K. pneumoniae were 91.2 and 75.5%, respectively. Meticillin resistance was present in 100% of Staphylococcus aureus and Coagulase negative staphylococci, and vancomycin resistance was not found. CONCLUSIONS: SBIs may occur in patients hospitalized with COVID-19 and lead to high mortality. The incidence of SBIs was associated with the severity of illness on admission. Gram-negative bacteria, especially A. baumannii and K. pneumoniae, were the main bacteria, and the resistance rates of the major isolated bacteria were generally high. This was a single-center study; thus, our results should be externally examined when applied in other institutions.


Subject(s)
Coinfection/drug therapy , Coinfection/epidemiology , Drug Resistance, Bacterial/physiology , Gram-Negative Bacterial Infections/epidemiology , Staphylococcal Infections/epidemiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Betacoronavirus , COVID-19 , China/epidemiology , Coinfection/mortality , Coronavirus Infections/pathology , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2 , Staphylococcal Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...