Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453107

ABSTRACT

Up to now, energy conservation, emission reduction, and environmental protection are still the goals that humanity continuously pursues. Passive radiative cooling is a zero-consumption cooling technology, which gains more and more attention. However, the contraction between mechanical strength and cooling performance of traditional radiative cooling materials still limits their scalable production. In this work, we developed a strong double-networked hybrid cellulosic foam via crosslinking recyclable CNF and PVA with a silane coupling agent in the freeze-drying process. Meanwhile, nano zinc oxide and MOF were added to improve the mechanical and solar scattering of foam. Benefiting from the synergistic solar scattering of ZnO and MOF and the stable double crosslinking network, the as-prepared hybrid cellulosic foam exhibits high solar reflectivity of 0.965, high IR emissivity of 0.94, ultrahigh mechanical strength of and low thermal conductivity. Based on above results, the hybrid cellulosic foam shows high-performance daytime cooling efficiency of 7.5 °C under direct sunlight in the hot region (Nanjing, China), which can serve as outdoor thermal-regulation materials. This work demonstrates that biomass materials possess the enormous potential of in thermal regulating materials, and also provides great possibilities for their applications in energy conservation, environmental protection and green building materials.


Subject(s)
Cold Temperature , Zinc Oxide , Biomass , China , Construction Materials , Freeze Drying
2.
ACS Nano ; 17(11): 10113-10128, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37229569

ABSTRACT

The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.


Subject(s)
Extracellular Matrix , Hyperthermia, Induced , Mice , Animals , Fibrosis , Collagen/pharmacology , Fibroblasts
SELECTION OF CITATIONS
SEARCH DETAIL
...