Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 477: 135262, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39047572

ABSTRACT

Biodegradable plastics, as an alternative to petroleum plastics, are fiercely increasing, but their incomplete degradation under natural conditions may lead to the breakdown into microplastics (MPs). Here, we explored the impacts of chicken manure-derived (MBC) and wood waste-derived biochar (WBC) on the degradation of polylactic acid microplastics (PLA-MPs) during soil incubation for one year. Both biochars induced more pronounced degradation characteristics in PLA-MPs, including enhanced surface roughness, the proportion of MPs < 100 µm by 12.89 %-25.67 %, oxygen loading and O/C ratio to 71.74 %-75.87 % and 1.70-1.76, as well as accelerated carbon loss and the cleavage of ester group and C-C bond. Also, biochar increased soil pH, depleted inorganic nitrogen and available phosphorus, and changed enzymic activity in PLA-MP-polluted soils. We proposed that both biochars accelerated the PLA-MP degradation by inducing alkaline, aminolysis/ammonolysis, oxidative, and microbial degradation. Among these, MBC induced aminolysis/ammonolysis by NH4+ via Fe2+-driven NO3-/NO2- reduction and microbial nitrogen fixation, and oxidative degradation by radicals generated through Fenton/Fenton-like reaction. WBC caused aminolysis/ammonolysis and oxidative degradation mainly through dissimilatory nitrate reduction to ammonium and surface free radicals on biochar. These findings indicate that biochar has the potential to accelerate PLA-MP degradation, and its regulatory mechanism depends on the type of biochar.

SELECTION OF CITATIONS
SEARCH DETAIL
...