Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Front Public Health ; 12: 1377685, 2024.
Article in English | MEDLINE | ID: mdl-38784575

ABSTRACT

Traditional environmental epidemiology has consistently focused on studying the impact of single exposures on specific health outcomes, considering concurrent exposures as variables to be controlled. However, with the continuous changes in environment, humans are increasingly facing more complex exposures to multi-pollutant mixtures. In this context, accurately assessing the impact of multi-pollutant mixtures on health has become a central concern in current environmental research. Simultaneously, the continuous development and optimization of statistical methods offer robust support for handling large datasets, strengthening the capability to conduct in-depth research on the effects of multiple exposures on health. In order to examine complicated exposure mixtures, we introduce commonly used statistical methods and their developments, such as weighted quantile sum, bayesian kernel machine regression, toxic equivalency analysis, and others. Delineating their applications, advantages, weaknesses, and interpretability of results. It also provides guidance for researchers involved in studying multi-pollutant mixtures, aiding them in selecting appropriate statistical methods and utilizing R software for more accurate and comprehensive assessments of the impact of multi-pollutant mixtures on human health.


Subject(s)
Environmental Exposure , Environmental Pollutants , Humans , Bayes Theorem , Models, Statistical
2.
Front Microbiol ; 15: 1345000, 2024.
Article in English | MEDLINE | ID: mdl-38680912

ABSTRACT

Introduction: Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods: In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results: The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion: This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.

3.
Int J Food Microbiol ; 417: 110682, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38626694

ABSTRACT

Hepatitis E infection is typically caused by contaminated water or food. In July and August 2022, an outbreak of hepatitis E was reported in a nursing home in Zhejiang Province, China. Local authorities and workers took immediate actions to confirm the outbreak, investigated the sources of infection and routes of transmission, took measures to terminate the outbreak, and summarized the lessons learned. An epidemiological investigation was conducted on all individuals in the nursing home, including demographic information, clinical symptoms, history of dietary, water intake and contact. Stool and blood samples were collected from these populations for laboratory examinations. The hygiene environment of the nursing home was also investigated. A case-control study was conducted to identify the risk factors for this outbreak. Of the 722 subjects in the nursing home, 77 were diagnosed with hepatitis E, for an attack rate of 10.66 %. Among them, 18 (23.38 %, 18/77) individuals had symptoms such as jaundice, fever, and loss of appetite and were defined as the population with hepatitis E. The average age of people infected with hepatitis E virus (HEV) was 59.96 years and the attack rate of hepatitis E among women (12.02 %, 59/491) was greater than that among men (7.79 %, 18/231). The rate was the highest among caregivers (22.22 %, 32/144) and lowest among logistics personnel (6.25 %, 2/32); however, these differences were not statistically significant (P > 0.05). Laboratory sequencing results indicated that the genotype of this hepatitis E outbreak was 4d. A case-control study showed that consuming pig liver (odds ratio (OR) = 7.50; 95 % confidence interval [CI]: 3.84-16.14, P < 0.001) and consuming raw fruits and vegetables (OR = 5.92; 95 % CI: 1.74-37.13, P = 0.017) were risk factors for this outbreak of Hepatitis E. Moreover, a monitoring video showed that the canteen personnel did not separate raw and cooked foods, and pig livers were cooked for only 2 min and 10 s. Approximately 1 month after the outbreak, an emergency vaccination for HEV was administered. No new cases were reported after two long incubation periods (approximately 4 months). The outbreak of HEV genotype 4d was likely caused by consuming undercooked pig liver, resulting in an attack rate of 10.66 %. This was related to the rapid stir-frying cooking method and the hygiene habit of not separating raw and cooked foods.


Subject(s)
Cooking , Hepatitis E , Nursing Homes , Pork Meat , Hepatitis E virus/classification , Hepatitis E virus/genetics , Hepatitis E/epidemiology , Hepatitis E/transmission , Hepatitis E/virology , Genotype , China/epidemiology , Pork Meat/virology , Liver/virology , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Risk Factors , Phylogeny
4.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508558

ABSTRACT

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Subject(s)
Lipid Metabolism Disorders , Metabolic Diseases , Humans , Ubiquitin-Protein Ligases/metabolism , Lipid Metabolism , Lipids
5.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458519

ABSTRACT

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Subject(s)
Benzhydryl Compounds , Core Binding Factor Alpha 1 Subunit , Phenols , Zebrafish , Animals , Zebrafish/metabolism , Osteoblasts/metabolism , Oxidative Stress
6.
iScience ; 27(3): 109323, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487011

ABSTRACT

Subtype interference has a significant impact on the epidemiological patterns of seasonal influenza viruses (SIVs). We used attributable risk percent [the absolute value of the ratio of the effective reproduction number (Rₑ) of different subtypes minus one] to quantify interference intensity between A/H1N1 and A/H3N2, as well as B/Victoria and B/Yamagata. The interference intensity between A/H1N1 and A/H3N2 was higher in southern China 0.26 (IQR: 0.11-0.46) than in northern China 0.17 (IQR: 0.07-0.24). Similarly, interference intensity between B/Victoria and B/Yamagata was also higher in southern China 0.14 (IQR: 0.07-0.24) than in norther China 0.10 (IQR: 0.04-0.18). High relative humidity significantly increased subtype interference, with the highest relative risk reaching 20.59 (95% CI: 6.12-69.33) in southern China. Southern China exhibited higher levels of subtype interference, particularly between A/H1N1 and A/H3N2. Higher relative humidity has a more pronounced promoting effect on subtype interference.

7.
Sci Adv ; 10(12): eadk9484, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507477

ABSTRACT

Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.


Subject(s)
Electroencephalography , Epilepsy , Animals , Humans , Seizures/etiology , Sirolimus , TOR Serine-Threonine Kinases , Mammals
8.
J Agric Food Chem ; 72(7): 3506-3519, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346922

ABSTRACT

Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.


Subject(s)
Potyvirus , Streptomyces , Tobacco Mosaic Virus , Anisomycin , Molecular Docking Simulation , Tobacco Mosaic Virus/genetics , Streptomyces/genetics , Antiviral Agents/pharmacology , Plant Diseases
9.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359126

ABSTRACT

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Subject(s)
Lipogenesis , Liver Glycogen , Liver , Non-alcoholic Fatty Liver Disease , Proprotein Convertases , Serine Endopeptidases , Uridine Diphosphate Glucose , Animals , Humans , Mice , Carbon/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Proprotein Convertases/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Uridine Diphosphate Glucose/administration & dosage , Uridine Diphosphate Glucose/metabolism , Male , Mice, Inbred C57BL , HEK293 Cells
10.
Sci Total Environ ; 920: 171014, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369163

ABSTRACT

With the rapid development of the economy, household activities have emerged as an important source of greenhouse gas (GHG) emissions, making them a crucial focal point for research in the pursuit of sustainable development and carbon emission reduction. Hulunber, as a typical steppe region in eastern Eurasia, is representative of studying the GHG emissions from household ranches, which are the basic production units in this region. In this paper, based on survey data of 2018 and 2019, we quantified and assessed GHG emissions from household ranches by combining life cycle assessment (LCA) and structural equation modeling (SEM) approaches, with LCA to define household ranches system boundary and SEM to determine the key driving factors of emissions. The results showed that GHG emissions of meat sheep live weight was 23.54 kg CO2-eq/kg. The major contributor to household GHG emissions was enteric methane (55.23 %), followed by coal use (20.80 %) and manure management systems (9.16 %), and other contributing factors (14.81 %). The SEM results indicated that the GHG emissions from household ranches were derived primarily by economic level, while the economic level was significantly affected by income. This study also found a significant positive and linear correlation between household GHG emissions and the number of meat sheep (R2 = 0.89, P < 0.001). The GHG emissions from meat sheep production (67.52 %) were double times greater than household livelihood consumption (32.48 %). These findings emphasized the importance of reducing emissions from meat sheep production and adjusting the energy mix of household livelihood, contributing to the establishment of a low-carbon household livelihood operation.


Subject(s)
Greenhouse Gases , Animals , Sheep , Greenhouse Gases/analysis , Greenhouse Effect , Grassland , Carbon , Meat
11.
Environ Sci Technol ; 58(2): 1369-1377, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38048160

ABSTRACT

An improved fundamental understanding of active site structures can unlock opportunities for catalysis from conceptual design to industrial practice. Herein, we present the computational discovery and experimental demonstration of a highly active surface-phosphorylated ceria catalyst that exhibits robust chlorine tolerance for catalysis. Ab initio molecular dynamics (AIMD) calculations and in situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) identified a predominantly HPO4 active structure on CeO2(110) and CeO2(111) facets at room temperature. Importantly, further elevating the temperature led to a unique hydrogen (H) atom hopping between coordinatively unsaturated oxygen and the adjacent P═O group of HPO4. Such a mobile H on the catalyst surface can effectively quench the chlorine radicals (Cl•) via an orientated reaction analogous to hydrogen atom transfer (HAT), enabling the surface-phosphorylated CeO2-supported monolithic catalyst to exhibit both expected activity and stability for over 68 days during a pilot test, catalyzing the destruction of a complex chlorinated volatile organic compound industrial off-gas.


Subject(s)
Chlorine , Oxygen , Catalysis , Temperature , Hydrogen
12.
J Adv Res ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38123019

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW: This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.

13.
Front Endocrinol (Lausanne) ; 14: 1178396, 2023.
Article in English | MEDLINE | ID: mdl-37908752

ABSTRACT

Sleep disorders affect mental and physical health. Infertile women undergoing assisted reproductive technology (ART) treatment are prone to sleep disorders. Sleep condition, its influencing factors, and the association between sleep condition and ART treatment outcomes before treatment have not been explored within a population with a large sample size. Therefore, we investigated the sleep characteristics of 1002 Chinese infertile women before ovulation induction and investigated the influencing factors (negative and positive psychological factors, demographics, and fertility characteristics). We also examined whether sleep conditions before treatment predicted reproductive outcomes. We found that 24.1% of participants reported poor sleep quality. Women with primary infertility reported poorer sleep than women with secondary infertility. Negative psychological factors, including depression, anxiety, and perceived stress were associated with poor sleep, whereas positive affect was linked with good sleep. Adverse sleep characteristics, including poor subjective sleep quality, sleep disturbances, and poor sleep efficiency, decreased the quantity and quality of oocytes retrieved, fertilization rates, and clinical pregnancy rates. This study indicates that before ART treatment, a large number of females with infertility suffer from sleep problems, which are affected by psychological factors and infertility type, and unhealthy sleep characteristics may impair treatment outcomes. Our findings highlight the importance of screening and treatment for sleep disorders before the enrollment of ART treatment in infertile women.


Subject(s)
Infertility, Female , Sleep Wake Disorders , Pregnancy , Humans , Female , Infertility, Female/therapy , Infertility, Female/etiology , Prospective Studies , East Asian People , Reproductive Techniques, Assisted/adverse effects , Sleep , Sleep Wake Disorders/complications , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/therapy
14.
J Nutr ; 153(12): 3373-3381, 2023 12.
Article in English | MEDLINE | ID: mdl-37923224

ABSTRACT

BACKGROUND: Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES: This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS: Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS: Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS: HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.


Subject(s)
Testis , Vitamin A , Male , Mice , Animals , Testis/metabolism , Vitamin A/metabolism , Sperm Motility , Semen , Spermatozoa/metabolism , Spermatozoa/pathology , Heat-Shock Response
15.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938421

ABSTRACT

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Subject(s)
Cardiovascular Diseases , Heart Failure , Humans , Oxidative Phosphorylation , Aldehyde-Lyases , Metabolic Networks and Pathways
16.
Front Public Health ; 11: 1243408, 2023.
Article in English | MEDLINE | ID: mdl-37744517

ABSTRACT

Introduction: Several studies have reported on hepatitis E virus (HEV) prevalence in various regions of China, but the results vary widely. Herein, we conducted a systematic review and meta-analysis to assess the seroprevalence, RNA-positive rate, genotype distribution of HEV in China, and its risk factors. Methods: We included 208 related studies involving 1,785,569 participants published between 1997 and 2022. Random-effects models were used to pool prevalence, and subgroup analyses were conducted by population, gender, age, study period, regions, and rural-urban distribution. The meta regression models and pooled odds ratios (OR) were performed to identify risk factors for HEV infections. Results: The pooled anti-HEV IgG, IgM, and Ag seroprevalence, and RNA detection rates in China from 1997 to 2022 were 23.17% [95% confidence interval (CI): 20.23-26.25], 0.73% (95% CI: 0.55-0.93), 0.12% (95% CI: 0.01-0.32), and 6.55% (95% CI: 3.46-12.05), respectively. The anti-HEV IgG seropositivity was higher in the occupational population (48.41%; 95% CI: 40.02-56.85) and older adult aged 50-59 years (40.87%; 95% CI: 31.95-50.11). The dominant genotype (GT) of hepatitis E in China was GT4. Notably, drinking non-tap water (OR = 1.82; 95% CI: 1.50-2.20), consumption of raw or undercooked meat (OR = 1.47; 95% CI: 1.17-1.84), and ethnic minorities (OR = 1.50; 95% CI: 1.29-1.73) were risk factors of anti-HEV IgG seroprevalence. Discussions: Overall, the prevalence of hepatitis E was relatively high in China, especially among older adults, ethnic minorities, and humans with occupational exposure to pigs. Thus, there is a need for preventive measures, including HEV infection screening and surveillance, health education, and hepatitis E vaccine intervention in high-risk areas and populations. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023397036.

17.
Int J Infect Dis ; 135: 70-76, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567553

ABSTRACT

OBJECTIVE: Understanding the global patterns of respiratory syncytial virus (RSV) is crucial for developing effective prevention and control strategies. METHODS: Data on RSV-related burden were extracted from the Global Burden of Disease 2019. Joinpoint regression models were used to assess the global temporal trends of RSV and further stratified analyses were conducted according to the Socio-demographic Index (SDI), which is a composite measure of income, education, and total fertility. Age-period-cohort model was used to evaluate age, period, and cohort effects. RESULTS: In 2019, the global age-standardized rate of mortality (ASMR) and disability-adjusted life years (ASR-DALYs) of RSV were 4.79/100,000 (95% uncertainty interval [95% UI]: 1.82/100,000-9.32/100,000) and 218.34/100,000 (95% UI: 92.06/100,000-376.80/100,000), respectively. The burden of RSV was higher in men than women. The highest ASMR (10.26/100,000, 3.80/100,000-20.16/100,000) and ASR-DALYs (478.71/100,000, 202.40/100,000-840.85/100,000) were reported in low-SDI region. Although mortality and DALYs rates in all age groups declined globally, the pace of decline was not uniform across age groups. Mortality rate in the elderly over 70 years surpassed that in children under 5 years in 2019. CONCLUSION: This study highlights the need for targeted interventions to reduce the burden of RSV, particularly in low-SDI region, and among the elderly over 70 years.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Male , Child , Humans , Female , Child, Preschool , Aged , Quality-Adjusted Life Years , Global Burden of Disease , Respiratory Syncytial Virus Infections/epidemiology , Socioeconomic Factors , Income , Global Health
18.
BMC Plant Biol ; 23(1): 375, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37525109

ABSTRACT

BACKGROUND: Abrus cantoniensis Hance. (Ac) and Abrus mollis (Am), two edible and medicinal plants with economic value in southern China, belong to the Abrus genus. Due to its growth characteristics, Am often replaces Ac in folk medicine. However, the latest National Pharmacopeia of China only recommends Ac. The differences in the metabolite composition of the plants are directly related to the differences in their clinical efficacy. RESULTS: The difference in metabolites were analyzed using an untargeted metabolomic approach based on ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC‒ESI‒MS/MS). The roots (R), stems (S) and leaves (L) of the two varieties were examined, and 635 metabolites belonging to 8 classes were detected. A comparative study revealed clear variations in the metabolic profiles of the two plants, and the AmR group had more active ingredients (flavonoids and terpenoids) than the AcR group. The metabolites classified as flavonoids and triterpene saponins showed considerable variations among the various samples. Both Ac and Am had unique metabolites. Two metabolites (isovitexin-2''-xyloside and soyasaponin V) specifically belong to Ac, and nine metabolites (vitexin-2"-O-galactoside, ethyl salicylate, 6-acetamidohexanoic acid, rhein-8-O-glucoside, hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)-glucoside, methyl dioxindole-3-acetate, veratric acid, isorhamnetin-3-O-sophoroside-7-O-rhamnoside, and isorhamnetin-3-O-sophoroside) specifically belong to Am. CONCLUSIONS: The metabolite differences between Ac and Am cause the differences in their clinical efficacy. Our findings serve as a foundation for further investigation of biosynthesis pathways and associated bioactivities and provide guidance for the clinical application of traditional Chinese medicine.


Subject(s)
Abrus , Abrus/chemistry , Tandem Mass Spectrometry , Flavonoids/chemistry , Glucosides , Metabolomics
19.
Front Neurosci ; 17: 1200701, 2023.
Article in English | MEDLINE | ID: mdl-37496741

ABSTRACT

Introduction: Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown. Methods: To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions. Results: The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation. Discussion: The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

20.
Food Funct ; 14(10): 4490-4506, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37083079

ABSTRACT

Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Polysaccharides/pharmacology , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...