Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 250: 116920, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049892

ABSTRACT

Naturally-sourced oligoguluronate (GB) has Ca-binding ability and can be employed to modulate Ca-dependent gels. Here soy protein isolate (SPI) gel was used as a model to investigate the influence of GB on the microstructure and properties of Ca-dependent food gels. The results showed that GB significantly decreased the storage modulus (G'), mechanical strength, elasticity, hardness and chewiness of SPI gels. Among all samples, the gel containing 30 mM GB showed the most compact network structure and thus the highest water holding capacity of 77.5 %. It should be noted that Ca-GB dimers were beneficial to the gel formation and can modify the gel properties but have no impact on the gelation kinetics. The findings gained in this study confirmed the great potential of GB in modulating the structure and properties of Ca-dependent gels, thereby obtaining food products with desired characteristics (e.g., soft and brittle tofu).


Subject(s)
Calcium/chemistry , Gels/chemistry , Glucuronic Acid/chemistry , Soybean Proteins/chemistry , Water/chemistry , Rheology
2.
Carbohydr Polym ; 242: 116389, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32564839

ABSTRACT

Alginate and pectin are emblematic natural polyuronates that have been widely used in food, cosmetics and medicine. Ca-dependent gelation is one of their most important functional properties. The gelation mechanisms of alginate and pectin, known as egg-box model, were believed to be basically the same, because their Ca-binding sites show a mirror symmetric conformation. However, studies have found that the formation and the structure of egg-box dimmers between alginate and pectin were different. Very few studies have reviewed those differences. Therefore, this study was proposed to first summarize the intrinsic and extrinsic factors that can influence the gelation of alginate and pectin. The differences in the effect of these factors on the gelation of alginate and pectin were then discussed. Meanwhile, the similarity and difference in their gelation mechanism was also summarized. The knowledge gained in this review would provide useful information for the practical applications of alginate and pectin.


Subject(s)
Alginates/chemistry , Pectins/chemistry , Carbohydrate Conformation , Gels/chemical synthesis , Gels/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...