Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 54, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637859

ABSTRACT

BACKGROUND: Thermotolerance is widely acknowledged as a pivotal factor for fungal survival across diverse habitats. Heat stress induces a cascade of disruptions in various life processes, especially in the acquisition of carbon sources, while the mechanisms by which filamentous fungi adapt to heat stress and maintain carbon sources are still not fully understood. RESULTS: Using Trichoderma guizhouense, a representative beneficial microorganism for plants, we discover that heat stress severely inhibits the lignocellulases secretion, affecting carbon source utilization efficiency. Proteomic results at different temperatures suggest that proteins involved in the poly ADP-ribosylation pathway (TgPARP and TgADPRase) may play pivotal roles in thermal adaptation and lignocellulose utilization. TgPARP is induced by heat stress, while the deletion of Tgparp significantly improves the lignocellulose utilization capacity and lignocellulases secretion in T. guizhouense. Simultaneously, the absence of Tgparp prevents the excessive depletion of ATP and NAD+, enhances the protective role of mitochondrial membrane potential (MMP), and elevates the expression levels of the unfolded protein response (UPR)-related regulatory factor Tgire. Further investigations reveal that a stable MMP can establish energy homeostasis, allocating more ATP within the endoplasmic reticulum (ER) to reduce protein accumulation in the ER, thereby enhancing the lignocellulases secretion in T. guizhouense under heat stress. CONCLUSIONS: Overall, these findings underscored the significance of Tgparp as pivotal regulators in lignocellulose utilization under heat stress and provided further insights into the molecular mechanism of filamentous fungi in utilizing lignocellulose.

2.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664812

ABSTRACT

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Subject(s)
Esterases , Methionine , Esterases/metabolism , Esterases/genetics , Methionine/metabolism , Xylans/metabolism , Ammonium Sulfate/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Hypocreales/metabolism , Hypocreales/enzymology , Hypocreales/genetics , Lignin/metabolism , Acetylation
3.
Sci Total Environ ; 705: 135236, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31841899

ABSTRACT

Long-term intensive management, such as inorganic fertilization and soil tillage, have been reported to decrease soil organic carbon content (SOC) and diversity of soil bacterial communities, as well as increase N2O emissions in moso bamboo forests. However, the response of the N-cycling soil microbial community to intensive management remains unclear. To address this, we examined the effects of intensive moso bamboo management on nitrifying and denitrifying microorganisms. Soils receiving non-management (NM) and 10, 15, 20, and 25 years of intensive management (IM10, IM15, IM20, IM25) were characterized using quantitative real-time PCR (qPCR) and high-through sequencing methods. Our results showed that abundances of ammonia monooxygenase (amoA) from ammonia-oxidizing archaea (AOA) significantly increased (P < 0.05) and were greatest in IM15 (8.37 × 107 copies/g dry soils) and IM25 (5.42 × 107 copies/g dry soils) in top- and subsoils, respectively, while nitrous oxide reductase (nosZ) abundance significantly decreased by 59.1% (topsoil) and 36.4% (subsoil) in IM20 (P < 0.05). GroupI.1a-associated affiliating to AOA, and Bradyrhizobium affiliating to nosZ, were keys groups for nitrifiers and denitrifiers, respectively, and showed the greatest variations in response to long-term intensive management. Abundances of ammonia-oxidizing bacteria (AOB) and the nitrite reductase gene nirS were less affected, as were the dominant Nitrosospira species belonging to the AOB community. Except the AOB amoA abundance, soil nitrogen was found to be the main factor influencing the abundance, diversity, and composition of nitrifying genes, while denitrifying genes were mainly affected by SOC and available potassium, indicating that different factors control populations of nitrifiers and denitrifiers. Collectively, our study revealed that groupings of nitrifying and denitrifying microorganisms responded differently to intensive management. This information is of potential value towards identifying strategies to minimize nitrogen loss in moso bamboo plantations.


Subject(s)
Soil Microbiology , Soil , Ammonia , Archaea , Carbon , Nitrification , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...