Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1385137, 2024.
Article in English | MEDLINE | ID: mdl-38550869

ABSTRACT

Introduction: Porcine circovirus type 2 (PCV2) is the pathogen of Porcine Circovirus Associated Diseases. Porcine circovirus type 3 (PCV3) is a novel porcine circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS) and reproductive failure. PCV2 is clearly pathogenic, while the pathogenicity of PCV3 remains controversial, so it is crucial to monitor the prevalence of PCV2 and PCV3 in healthy and diseased pigs to investigate the effects of PCV3 and PCV2 on the health status of pigs. Methods: Here, we developed a PCV2 and PCV3 dual TaqMan quantitative PCR (qPCR) method to test samples from healthy and diseased pigs, to clarify the differences in the positive rates and viral copy numbers of PCV2 and PCV3, and to analyze the genetic evolution and molecular characterization of the viral genomes obtained with sequence alignment and phylogenetic analysis, homology and structural analysis of Cap proteins, and selection pressure analysis. Results: We successfully established a dual TaqMan qPCR method for PCV2 and PCV3 with good repeatability, specificity and sensitivity. In total, 1,385 samples from 15 Chinese provinces were tested with the established qPCR. The total positive rates were 37.47% for PCV3 and 57.95% for PCV2, and the coinfection rate for was 25.49%. The positive rates of PCV3 and PCV2 in 372 healthy pigs were 15.05 and 69.89%, respectively, and the coinfection rate was 12.90%. The positive rates of PCV3 and PCV2 in 246 diseased pigs were 55.69 and 83.33%, respectively, and the coinfection rate was 47.97%. Eighteen PCV3 genomes and 64 PCV2 genomes were identified, including nine each of the PCV3a-1 and PCV3b genotypes, eight of PCV2a, 16 of PCV2b, and 40 of PCV2d. The amino acid identity within the PCV3 Cap proteins was 94.00-100.0%, whereas the PCV2 Cap proteins showed an identity of 81.30-100.0%. PCV3 Cap was most variable at amino acid sites 24, 27, 77, 104 and 150, whereas PCV2 Cap had 10-13 unique sites of variation between genotypes. Discussion: These results clarify the prevalence and variations of PCV2 and PCV3 in healthy and diseased pigs, which will provide a basis for the prevention and control of the two viral infections.

2.
Vet Microbiol ; 283: 109796, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285792

ABSTRACT

There are three main genotypes of porcine circovirus type 2 (PCV2), namely PCV2a, PCV2b and PCV2d, of which PCV2b and PCV2d are currently the most common. There are antigenic differences between these different genotypes. To explore the effect of PCV2 antigen differences on the immune protection provided by vaccines, a cross-immune protection test was carried out in pigs. Three genotype strains, PCV2a-CL, PCV2b-MDJ and PCV2d-LNHC, were inactivated and emulsified to prepare inactivated vaccines to immunize pigs, who were then challenged with the circulating strains PCV2b-BY and PCV2d-LNHC. Immunoperoxidase monolayer assays (IPMAs) and micro-neutralization assays were used to detect antibodies against the three different genotypes of PCV2. The results showed that the three genotype vaccines induced pigs to produce antibodies against the same and different genotypes of PCV2, but the levels of IPMA and neutralizing antibodies against the same genotype were higher than those against different genotypes. Quantitative Polymerase Chain Reaction (qPCR), virus titration and immunohistochemistry were used to detect PCV2 genomic DNA, live virus and antigen, respectively, in inguinal lymph nodes of experimental pigs. Following challenge with the PCV2b-BY strain, the viral DNA load in the inguinal lymph nodes of pigs immunized with the three genotype vaccines was reduced by more than 99 % compared to the unimmunized group. Following challenge with the PCV2d-LNHC strain, the viral DNA loads in the inguinal lymph nodes of pigs immunized with PCV2a, PCV2b and PCV2d genotype vaccines were reduced by 93.8 %, 99.8 % and 98.3 %, respectively, compared to unimmunized controls. In addition, neither live PCV2 virus nor antigen were detected in the inguinal lymph nodes of pigs immunized with any of the genotype vaccines (0/18), but both were detected in the lymph nodes of experimental pigs in the unimmunized control group (6/6). These findings suggest that, although the antigenic differences of the three genotype strains induce significant differences in antibody levels, they seem to have little effect on cross-protection between different genotypes.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Viral Vaccines , Animals , Swine , Antibodies, Viral , Circovirus/genetics , DNA, Viral/genetics , Genotype , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary
3.
Front Microbiol ; 14: 1162104, 2023.
Article in English | MEDLINE | ID: mdl-37065133

ABSTRACT

Introduction: A study in 2006 showed that the clinical course of PEDV disease was markedly aggravated by transplacental infection of PCV2. Therefore, we investigated whether the small intestine supports PCV2 replication and the effect of PCV2 infection on PEDV replication in epithelial cells in vitro. Methods: To confirm the intestinal tropism of PCV2, the viral loads in the small-intestinal tissues after PCV2 infection were determined with virus titration, and the viral titers in the infected pig jejunum, ileum, ileocecal valve, and colon were 104.86, 104.09, 102.52, and 102.35 TCID50/g, respectively. We then determined the propagation characteristics of PCV2 in ileal epithelial cells (IPI-FX) and jejunal epithelial cells (IPEC-J2) with an immunoperoxidase monolayer assay, virus titration, and an immunofluorescence assay. Both IPI-FX and IPEC-J2 cells supported the replication of PCV2, with titers of 105.5 and 105.0 TCID50/ml, respectively. We established an infection model of PCV2 and PEDV in IPI-FX cells and found that PEDV and PCV2 infected the cells individually and together. The effects of PCV2 infection on PEDV replication were determined with reverse transcription-quantitative PCR (qPCR), western blotting, and virus titration. When PCV2 infected IPI-FX cells before PEDV, PCV2 significantly inhibited the replication of PEDV in a dose- and time-dependent manner and that the mRNAs of IFN-ß, TNF-α, IL1ß, and OASL were downregulated (detected with qPCR). Surprisingly, when IPI-FX cells were co-infected with PCV2 and PEDV, PCV2 promoted the replication of PEDV, the expression of the host IFN-ß, TNF-α, IL1ß, and OASL mRNAs was upregulated. Discussion: These findings demonstrate that the co-infection of IPI-FX cells with PCV2 and PEDV represents an excellent in vitro model in which to investigate their combined pathogenic mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...