Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 19(12): 2649-2660, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595283

ABSTRACT

Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.

2.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948998

ABSTRACT

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Respiratory Insufficiency , Humans , COVID-19/complications , COVID-19/pathology , Pulmonary Fibrosis/pathology , Autopsy , SARS-CoV-2 , Lung/pathology , Macrophages/pathology , Respiratory Insufficiency/pathology , Apoptosis
3.
Front Oncol ; 13: 1175279, 2023.
Article in English | MEDLINE | ID: mdl-37274229

ABSTRACT

Primary pulmonary hyalinizing clear cell carcinoma (HCCC) is a rare salivary gland-type tumor newly recognized in recent years, with approximately 21 cases reported to date in the English literature, which constitutes a challenge in pathology diagnosis, particularly in small biopsy specimens. Here, we present a case of pulmonary HCCC diagnosed by computed tomography-guided percutaneous lung biopsy in a 70-year-old man's right lower lung. Although the morphology and immunophenotype of the tumor suggested the diagnosis of mucoepidermoid carcinoma, fluorescence in situ hybridization failed to reveal the rearrangement of MAML2 gene, which is characteristic of mucoepidermoid carcinoma. Instead, further molecular genetic testing showed that the tumor harbored a rare EWSR1::CREM fusion combined with a previously unreported IRF2::NTRK3 fusion. Pulmonary HCCC is commonly regarded as a low-grade malignant tumor with an indolent course, but this case has a different biological behavior, presenting extensive dissemination and metastases at the time of diagnosis, which expands our understanding of the prognosis of this tumor. The patient has had five cycles of combination chemotherapy and has been alive with the tumor for eight months.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122663, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37001264

ABSTRACT

Phenol red (PR) is generally used as an acid-base indicator and a printing and dyeing colorant. When its content exceeds a certain concentration in water, it will cause great damage to the human body. Therefore, it is very important to detect the content of PR in water. The advantage of surface enhanced Raman scattering (SERS) is detecting samples quickly, non-destructive and high sensitivity without sample pre-treatment. SERS has attracted great attention in all fields of detection and analysis. In this paper, the method of attaching silver nanoparticles to metallic single-walled carbon nanotubes form carbon nanotubes/silver nanoparticles (CNTs/AgNPs) structure and then combining it with silica sheet is proposed. SERS substrate with silica/carbon nanotubes/silver nanoparticles (SiO2/CNTs/AgNPs) composite structure has extremely high reinforcement effect. In the quantitative analysis of the detected substance, mathematical fitting or machine learning is used to find the relationship between the intensity of Raman signal and the concentration of the detected substance. The BP neural network optimized by genetic algorithm (GA-BP) is designed in this study. The weights of GA-BP to enhance the robustness of BP neural network, the method of adaptive learning rate and the number of hidden nodes is set to solve the problem that GA-BP is easy to fall into local optimum, thus establishing a quantitative analysis model of PR solution concentration. The model can detect different concentrations of PR solutions with high accuracy quickly, simply and sensitively. Finally, compared with other published quantitative models, GA-BP correlation coefficient R2 determined by the training results of the model is 0.99996, and the root mean square error of the prediction is RMSEP = 0.002510, which is 0.0005 higher than the mathematical fitting method, it shows better performance. A reliable idea for the preparation of SERS substrate and online detection of PR concentration in water proposed in this study.

5.
NPJ Parkinsons Dis ; 9(1): 26, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36792618

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by defective dopaminergic (DAergic) input to the striatum. Mutations in two genes encoding synaptically enriched clathrin-uncoating factors, synaptojanin 1 (SJ1) and auxilin, have been implicated in atypical Parkinsonism. SJ1 knock-in (SJ1-KIRQ) mice carrying a disease-linked mutation display neurological manifestations reminiscent of Parkinsonism. Here we report that auxilin knockout (Aux-KO) mice display dystrophic changes of a subset of nigrostriatal DAergic terminals similar to those of SJ1-KIRQ mice. Furthermore, Aux-KO/SJ1-KIRQ double mutant mice have shorter lifespan and more severe synaptic defects than single mutant mice. These include increase in dystrophic striatal nerve terminals positive for DAergic markers and for the PD risk protein SV2C, as well as adaptive changes in striatal interneurons. The synergistic effect of the two mutations demonstrates a special lability of DAergic neurons to defects in clathrin uncoating, with implications for PD pathogenesis in at least some forms of this condition.

6.
J Biol Chem ; 298(12): 102704, 2022 12.
Article in English | MEDLINE | ID: mdl-36379251

ABSTRACT

The autophagic clearance of mitochondria has been defined as mitophagy, which is triggered by mitochondrial damage and serves as a major pathway for mitochondrial homeostasis and cellular quality control. PINK1 and Parkin-mediated mitophagy is the most extensively studied form of mitophagy, which has been linked to the pathogenesis of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current paradigm of this particular mitophagy pathway is that the ubiquitination of the outer mitochondrial membrane is the key step to enable the recognition of damaged mitochondria by the core autophagic component autophagosome. However, whether the inner mitochondrial membrane (IMM) is ubiquitinated by Parkin and its contribution to sufficient mitophagy remain unclear. Here, using molecular, cellular, and biochemical approaches, we report that prohibitin 2 (PHB2), an essential IMM receptor for mitophagy, is ubiquitinated by Parkin and thereby gains higher affinity to the autophagosome during mitophagy. Our findings suggest that Parkin directly binds to PHB2 through its RING1 domain and promotes K11- and K33-linked ubiquitination on K142/K200 sites of PHB2, thereby enhancing the interaction between PHB2 and MAP1LC3B/LC3B. Interestingly and importantly, our study allows us to propose a novel model in which IMM protein PHB2 serves as both a receptor and a ubiquitin-mediated base for autophagosome recruitment to ensure efficient mitophagy.


Subject(s)
Mitochondrial Membranes , Mitophagy , Prohibitins , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitophagy/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Prohibitins/metabolism , Humans
7.
J Pathol ; 258(2): 121-135, 2022 10.
Article in English | MEDLINE | ID: mdl-35723032

ABSTRACT

Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Tumor-Associated Macrophages
8.
Lab Invest ; 102(7): 741-752, 2022 07.
Article in English | MEDLINE | ID: mdl-35351965

ABSTRACT

Invasive growth of glioblastoma makes residual tumor unremovable by surgery and leads to disease relapse. Temozolomide is widely used first-line chemotherapy drug to treat glioma patients, but development of temozolomide resistance is almost inevitable. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is found to be related to temozolomide response of gliomas. However, whether inducing ferroptosis could affect invasive growth of glioblastoma cells and which ferroptosis-related regulators were involved in temozolomide resistance are still unclear. In this study, we treated glioblastoma cells with RSL3, a ferroptosis inducer, in vitro (cell lines) and in vivo (subcutaneous and orthotopic animal models). The treated glioblastoma cells with wild-type or mutant IDH1 were subjected to RNA sequencing for transcriptomic profiling. We then analyze data from our RNA sequencing and public TCGA glioma database to identify ferroptosis-related biomarkers for prediction of prognosis and temozolomide resistance in gliomas. Analysis of transcriptome data from RSL3-treated glioblastoma cells suggested that RSL3 could inhibit glioblastoma cell growth and suppress expression of genes involved in cell cycle. RSL3 effectively reduced mobility of glioblastoma cells through downregulation of critical genes involved in epithelial-mesenchymal transition. Moreover, RSL3 in combination with temozolomide showed suppressive efficacy on glioblastoma cell growth, providing a promising therapeutic strategy for glioblastoma treatment. Although temozolomide attenuated invasion of glioblastoma cells with mutant IDH1 more than those with wild-type IDH1, the combination of RSL3 and temozolomide similarly impaired invasive ability of glioblastoma cells in spite of IDH1 status. Finally, we noticed that both ferritin heavy chain 1 and ferritin light chain predicted unfavorable prognosis of glioma patients and were significantly correlated with mRNA levels of methylguanine methyltransferase as well as temozolomide resistance. Altogether, our study provided rationale for combination of RSL3 with temozolomide to suppress glioblastoma cells and revealed ferritin heavy chain 1 and ferritin light chain as biomarkers to predict prognosis and temozolomide resistance of glioma patients.


Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Glioma , Animals , Apoferritins/pharmacology , Apoferritins/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use
9.
Cancer Lett ; 533: 215605, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35219772

ABSTRACT

Although the tumorigenic potential of glioma stem cells (GSCs) is associated with multiple molecular alterations, the gene amplification status of GSCs has not been elucidated. Overexpression of HomeoboxA5 (HOXA5) is associated with increased glioma malignancy. In this study, we identify the gene amplification and protein overexpression of HOXA5 in GSCs and its function in regulating GSC maintenance and the downstream transcriptional effector, to explore the significance of HOXA5 amplification/overexpression for GSC identification and prognostic determination. The HOXA5 gene is significantly amplified in glioblastoma (GBM) and is an independent prognostic factor for predicting worse patient outcomes. Specifically, HOXA5 gene amplification and the resultant protein overexpression are correlated with increased proportions of GSCs and enhanced self-renewal/invasiveness of these cells. Disruption of HOXA5 expression impairs GSC survival and GBM tumor propagation. Mechanistically, HOXA5 directly binds to the promoter region of protein tyrosine phosphatase receptor type Z1 (PTPRZ1), thereby upregulating this gene for GSC maintenance. Suppression of PTPRZ1 largely compromises the pro-tumoral effect of HOXA5 on GSCs. In summary, HOXA5 amplification serves as a genetic biomarker for predicting worse GBM outcome, by enhancing PTPRZ1-mediated GSC survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/pathology , Carcinogenesis/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Glioblastoma/pathology , Glioma/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Neoplastic Stem Cells/metabolism , Phosphoric Monoester Hydrolases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
10.
Neuron ; 110(5): 824-840.e10, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35065714

ABSTRACT

Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.


Subject(s)
Caenorhabditis elegans , Synaptic Vesicles , Animals , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans/metabolism , Endocytosis/physiology , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism
11.
J Cancer ; 12(3): 818-826, 2021.
Article in English | MEDLINE | ID: mdl-33403039

ABSTRACT

Glioma cells with stem cell-like properties are crucial for tumor initiation, progression and therapeutic resistance. Therefore, identifying specific factors in regulating stem-like traits is critical for the design of novel glioma therapeutics. Herein, we reported that ADP-Ribosylation Factor Like GTPase 4C (ARL4C) was highly expressed in glioma stem-like cells (GSLCs). GSLCs, determined by the efficiency of sphere formation in vitro and tumor growth in vivo, was increased by overexpression of ARL4C. ARL4C induced the tumorigenesis through ALDH1A3. Analyses of 325 patient specimens showed that ARL4C was highly expressed in glioblastoma (GBM) as compared with lower grade gliomas. In addition, higher level ARL4C expression in glioma was correlated with poorer progression-free survival and overall survival of patients. Therefore, ARL4C may act as a novel prognostic marker and a therapeutic target for GBM.

12.
Proc Natl Acad Sci U S A ; 117(22): 12428-12434, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32424101

ABSTRACT

Numerous genes whose mutations cause, or increase the risk of, Parkinson's disease (PD) have been identified. An inactivating mutation (R258Q) in the Sac inositol phosphatase domain of synaptojanin 1 (SJ1/PARK20), a phosphoinositide phosphatase implicated in synaptic vesicle recycling, results in PD. The gene encoding Sac2/INPP5F, another Sac domain-containing protein, is located within a PD risk locus identified by genome-wide association studies. Knock-In mice carrying the SJ1 patient mutation (SJ1RQKI) exhibit PD features, while Sac2 knockout mice (Sac2KO) do not have obvious neurologic defects. We report a "synthetic" effect of the SJ1 mutation and the KO of Sac2 in mice. Most mice with both mutations died perinatally. The occasional survivors had stunted growth, died within 3 wk, and showed abnormalities of striatal dopaminergic nerve terminals at an earlier stage than SJ1RQKI mice. The abnormal accumulation of endocytic factors observed at synapses of cultured SJ1RQKI neurons was more severe in double-mutant neurons. Our results suggest that SJ1 and Sac2 have partially overlapping functions and are consistent with a potential role of Sac2 as a PD risk gene.


Subject(s)
Inositol Polyphosphate 5-Phosphatases/genetics , Parkinson Disease/enzymology , Animals , Dopamine/metabolism , Genome-Wide Association Study , Humans , Inositol Polyphosphate 5-Phosphatases/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Endings/metabolism , Parkinson Disease/genetics , Phenotype , Synapses/metabolism
13.
Hum Pathol ; 97: 68-79, 2020 03.
Article in English | MEDLINE | ID: mdl-31926212

ABSTRACT

Immunotherapies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1) axis have been emerging as a promising therapeutic strategy to treat lung cancer. PD-1 is preferentially expressed by activated T lymphocytes; but whether/how its expression by tumor-associated macrophages (TAMs) in lung adenocarcinoma remains elusive. Herein, we investigate the frequency of PD-1 expression on TAMs in mouse allografts by flow cytometry analysis and evaluate the spatial distribution and clinicopathological significance of PD-1+ TAMs in 213 cases of human lung adenocarcinoma specimens by immunohistochemical staining. We find the expression of PD-1 by both mouse and human TAMs. Mouse PD-1+ TAMs possess unique transcriptional profile as compared to PD-1- TAMs. Furthermore, PD-1 is preferentially expressed by CD163+ TAMs in the tumor stroma than those in the tumor islets of lung adenocarcinoma. Stromal PD-1+ TAM infiltration is an independent predictor of reduced survival as determined by univariate (P < .001) and multivariate (P = .023) analysis. Moreover, patients with high stromal PD-1+ TAMs but low tumor cell PD-L1 expression have the shortest survival (P = .0001). Our study demonstrates that PD-1+ TAMs have unique gene expression characteristics and PD-1+ TAMs in the tumor stroma is a potential prognostic factor in lung adenocarcinoma, suggesting that a better understanding of PD-1+ TAMs will be beneficial for immunotherapy of lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung/immunology , Biomarkers, Tumor/analysis , Carcinoma, Lewis Lung/immunology , Lung Neoplasms/immunology , Macrophages/immunology , Programmed Cell Death 1 Receptor/analysis , Stromal Cells/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Animals , Biomarkers, Tumor/genetics , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Middle Aged , Prognosis , Programmed Cell Death 1 Receptor/genetics , Stromal Cells/pathology
14.
Lab Invest ; 100(4): 619-629, 2020 04.
Article in English | MEDLINE | ID: mdl-31748682

ABSTRACT

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Subject(s)
Chemokine CCL8/metabolism , Glioblastoma/metabolism , Macrophages/metabolism , Animals , Brain/cytology , Brain/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Humans , MAP Kinase Signaling System/physiology , Mice , Neoplasm Invasiveness/physiopathology , Neoplastic Stem Cells/cytology , Tumor Cells, Cultured
15.
Cancer Med ; 8(17): 7207-7218, 2019 12.
Article in English | MEDLINE | ID: mdl-31605439

ABSTRACT

AIMS: The aim of this study was to investigate the tumor microenvironment immune types (TMIT) based on tumor cell programmed cell death ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) distribution and whether distinct TMIT subtypes (TMIT I, PD-L1high /TILhigh ; TMIT II, PD-L1low /TILlow ; TMIT III, PD-L1high /TILlow ; and TMIT IV, PD-L1low /TILhigh ) differentially affect clinical outcomes of patients with lung adenocarcinoma (LAC) and squamous cell carcinoma (SCC). METHODS AND RESULTS: Immunohistochemistry (IHC) was applied to evaluate the expression of PD-L1 and the spatial distribution of programmed cell death 1 (PD-1) and CD8 TILs on the surgically resected specimens from 205 cases of LAC and 149 cases of SCC. PD-1 and CD8 TILs were more frequently distributed in SCC than those in LAC, regardless of their infiltrating in the tumor islets or stroma. The density of TILs was a poor prognostic factor in LAC but a favorable one in SCC. PD-L1 levels and its clinical prognostic significance differed in LAC vs SCC. LAC patients with TMIT III and SCC patients with TMIT I had the longest survival, respectively (P = .0197 and .0049). Moreover, TMIT stratification based on tumor cell PD-L1 expression and stromal CD8+ TILs could be considered as an independent prognostic factor of SCC patients' survival as determined by both univariate and multivariate analysis. CONCLUSION: Our study indicates that different type of TMIT provides its specific microenvironment with diverse impact on survival of LAC and SCC patients and highlights the importance of the integrative assessment of PD-L1 status and TILs' spatial distribution to predict patients' prognosis.


Subject(s)
Adenocarcinoma of Lung/immunology , Carcinoma, Squamous Cell/immunology , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Female , Humans , Kaplan-Meier Estimate , Lung/immunology , Lung/pathology , Lung/surgery , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Pneumonectomy , Prognosis , Retrospective Studies , Spatial Analysis
16.
Cancer Lett ; 442: 445-452, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30472185

ABSTRACT

Hybrid formation is a fundamental process in normal development and tissue homeostasis, while the presence and the biological role of hybrids between tumor-associated macrophages (TAMs) and glioblastoma (GBM) cells remain elusive. In this study, we observed that TAM-GBM cell hybrids existed in human GBM specimens as demonstrated by co-expression of glioma biomarkers (GFAP, IDH1R132H and PDGFRA) and macrophage biomarkers (CD68 and CD14). Furthermore, TAM-GBM cell hybrids could also be found in C57BL/6 mice orthotopically inoculated with mouse GBM cells labeled with RFP and after co-culture of bone marrow-derived macrophages from GFP-expressed mice with RFP-labeled GBM cells. The hybrids underwent nuclear reprogramming with unique gene expression profile as compared to parental cells. Moreover, glioma invasion-associated genes were enriched in the hybrids that possessed higher invasiveness, and more hybrids in the invasive margin of GBM were observed as compared to GBM core area. Our data demonstrate the presence of TAM-GBM cell hybrids that enhance GBM invasion. With a better understanding of TAM-GBM cell hybrids, new therapeutic strategies targeting GBM will be developed to treat GBM patients.


Subject(s)
Brain Neoplasms/pathology , Cell Movement , Cellular Reprogramming , Glioblastoma/secondary , Hybrid Cells/pathology , Macrophages/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Coculture Techniques , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Hybrid Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Invasiveness , Phenotype , Transcriptome , Tumor Microenvironment
17.
Nat Commun ; 8: 15080, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569747

ABSTRACT

Intense infiltration of tumour-associated macrophages (TAMs) facilitates malignant growth of glioblastoma (GBM), but the underlying mechanisms remain undefined. Herein, we report that TAMs secrete abundant pleiotrophin (PTN) to stimulate glioma stem cells (GSCs) through its receptor PTPRZ1 thus promoting GBM malignant growth through PTN-PTPRZ1 paracrine signalling. PTN expression correlates with infiltration of CD11b+/CD163+ TAMs and poor prognosis of GBM patients. Co-implantation of M2-like macrophages (MLCs) promoted GSC-driven tumour growth, but silencing PTN expression in MLCs mitigated their pro-tumorigenic activity. The PTN receptor PTPRZ1 is preferentially expressed in GSCs and also predicts GBM poor prognosis. Disrupting PTPRZ1 abrogated GSC maintenance and tumorigenic potential. Moreover, blocking the PTN-PTPRZ1 signalling by shRNA or anti-PTPRZ1 antibody potently suppressed GBM tumour growth and prolonged animal survival. Our study uncovered a critical molecular crosstalk between TAMs and GSCs through the PTN-PTPRZ1 paracrine signalling to support GBM malignant growth, indicating that targeting this signalling axis may have therapeutic potential.


Subject(s)
Carrier Proteins/metabolism , Cytokines/metabolism , Glioblastoma/immunology , Macrophages/metabolism , Neoplastic Stem Cells/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Animals , Cells, Cultured , Glioblastoma/metabolism , Humans , Mice , Neoplasm Transplantation , Paracrine Communication , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/metabolism
18.
Neuron ; 93(4): 882-896.e5, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28231468

ABSTRACT

Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients. Synapses of these mice displayed endocytic defects and a striking accumulation of clathrin-coated intermediates, strongly implicating Sac domain's activity in endocytic protein dynamics. Mutant brains had elevated auxilin (PARK19) and parkin (PARK2) levels. Moreover, dystrophic axonal terminal changes were selectively observed in dopaminergic axons in the dorsal striatum. These results strengthen evidence for a link between synaptic endocytic dysfunction and Parkinson's disease.


Subject(s)
Axons/metabolism , Clathrin/metabolism , Endocytosis/genetics , Mutation/genetics , Phosphoric Monoester Hydrolases/genetics , Synapses/metabolism , Animals , Dopamine/metabolism , Endocytosis/physiology , Humans , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism
19.
Brain ; 139(Pt 9): 2420-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27435091

ABSTRACT

SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136*) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843* and compound heterozygote p.Gln647Argfs*6/p.Ser1122Thrfs*3) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology.


Subject(s)
Drug Resistant Epilepsy/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Phosphoric Monoester Hydrolases/genetics , Age of Onset , Child , Child, Preschool , Cohort Studies , Consanguinity , Exome , Female , Humans , Male , Pedigree , Phenotype
20.
J Neurosci ; 34(49): 16544-9, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25471590

ABSTRACT

Several proteins encoded by PD genes are implicated in synaptic vesicle traffic. Endophilin, a key factor in the endocytosis of synaptic vesicles, was shown to bind to, and be ubiquitinated by, the PD-linked E3 ubiquitin ligase Parkin. Here we report that Parkin's level is specifically upregulated in brain and fibroblasts of endophilin mutant mice due to increased transcriptional regulation. Studies of transfected HEK293T cells show that Parkin ubiquitinates not only endophilin, but also its major binding partners, dynamin and synaptojanin 1. These results converge with the recently reported functional relationship of endophilin to the PD gene LRRK2 and with the identification of a PD-linked synaptojanin 1 mutation, in providing evidence for a link between PD and endocytosis genes.


Subject(s)
Acyltransferases/deficiency , Adaptor Proteins, Signal Transducing/deficiency , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Brain/metabolism , Dynamins/metabolism , Endocytosis/genetics , Endocytosis/physiology , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Transcription, Genetic , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...