Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 10 Suppl 3: 71, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27586240

ABSTRACT

BACKGROUND: Glioma is the most common brain tumor and it has very high mortality rate due to its infiltration and heterogeneity. Precise classification of glioma subtype is essential for proper therapeutic treatment and better clinical prognosis. However, the molecular mechanism of glioma is far from clear and the classical classification methods based on traditional morphologic and histopathologic knowledge are subjective and inconsistent. Recently, classification methods based on molecular characteristics are developed with rapid progress of high throughput technology. METHODS: In the present study, we designed a novel integrated gene coexpression analysis approach, which involves differential coexpression and differential regulation analysis (DCEA and DRA), to investigate glioma prognostic biomarkers and molecular subtypes based on six glioma transcriptome data sets. RESULTS: We revealed a novel three-transcription-factor signature including AHR, NFIL3 and ZNF423 for glioma molecular subtypes. This three-TF signature clusters glioma patients into three major subtypes (ZG, NG and IG subtypes) which are significantly different in patient survival as well as transcriptomic patterns. Notably, ZG subtype is featured with higher expression of ZNF423 and has better prognosis with younger age at diagnosis. NG subtype is associated with higher expression of NFIL3 and AHR, and has worse prognosis with elder age at diagnosis. According to our inferred differential networking information and previously reported signalling knowledge, we suggested testable hypotheses on the roles of AHR and NFIL3 in glioma carcinogenesis. CONCLUSIONS: With so far the least biomarkers, our approach not only provides a novel glioma prognostic molecular classification scheme, but also helps to explore its dysregulation mechanisms. Our work is extendable to prognosis-related classification and signature identification in other cancer researches.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , Glioma/diagnosis , Glioma/genetics , Transcription Factors/metabolism , Biomarkers, Tumor/metabolism , Glioma/metabolism , Humans , Machine Learning , Prognosis
2.
Sci Rep ; 6: 26942, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27245873

ABSTRACT

The rabbit (Oryctolagus cuniculus) is an important experimental animal for studying human diseases, such as hypercholesterolemia and atherosclerosis. Despite this, genetic information and RNA expression profiling of laboratory rabbits are lacking. Here, we characterized the whole-genome variants of three breeds of the most popular experimental rabbits, New Zealand White (NZW), Japanese White (JW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Although the genetic diversity of WHHL rabbits was relatively low, they accumulated a large proportion of high-frequency deleterious mutations due to the small population size. Some of the deleterious mutations were associated with the pathophysiology of WHHL rabbits in addition to the LDLR deficiency. Furthermore, we conducted transcriptome sequencing of different organs of both WHHL and cholesterol-rich diet (Chol)-fed NZW rabbits. We found that gene expression profiles of the two rabbit models were essentially similar in the aorta, even though they exhibited different types of hypercholesterolemia. In contrast, Chol-fed rabbits, but not WHHL rabbits, exhibited pronounced inflammatory responses and abnormal lipid metabolism in the liver. These results provide valuable insights into identifying therapeutic targets of hypercholesterolemia and atherosclerosis with rabbit models.


Subject(s)
Atherosclerosis/genetics , Diet, High-Fat/adverse effects , Genetic Variation , Genome , Hypercholesterolemia/genetics , Receptors, LDL/genetics , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/chemically induced , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cholesterol/administration & dosage , Disease Models, Animal , Gene Expression , Humans , Hypercholesterolemia/chemically induced , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Liver/metabolism , Liver/pathology , Molecular Sequence Annotation , Rabbits , Receptors, LDL/deficiency , Transcriptome , Whole Genome Sequencing
3.
Am J Cancer Res ; 5(9): 2605-25, 2015.
Article in English | MEDLINE | ID: mdl-26609471

ABSTRACT

Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing disease-related genes on the dataset we considered. We propose this extendable differential networking framework as a promising way to gain insights into gene regulatory mechanisms underlying cancer progression and other phenotypic changes.

4.
Sci Rep ; 3: 3368, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24284521

ABSTRACT

Identifying breast cancer patients is crucial to the clinical diagnosis and therapy for this disease. Conventional gene-based methods for breast cancer diagnosis ignore gene-gene interactions and thus may lead to loss of power. In this study, we proposed a novel method to select classification features, called "Selection of Significant Expression-Correlation Differential Motifs" (SSECDM). This method applied a network motif-based approach, combining a human signaling network and high-throughput gene expression data to distinguish breast cancer samples from normal samples. Our method has higher classification performance and better classification accuracy stability than the mutual information (MI) method or the individual gene sets method. It may become a useful tool for identifying and treating patients with breast cancer and other cancers, thus contributing to clinical diagnosis and therapy for these diseases.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Signal Transduction/genetics , Female , Gene Expression Profiling/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...