Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 87(1): 42, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356037

ABSTRACT

The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.


Subject(s)
Ecosystem , Rivers , Rivers/microbiology , Plankton/genetics , Estuaries , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Water
2.
Ecol Evol ; 13(6): e10157, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37325715

ABSTRACT

Cnidarians are the most primitive metazoans, but their evolutionary relationships are poorly understood, although recent studies present several phylogenetic hypotheses. Here, we collected 266 complete cnidarian mitochondrial genomes and re-evaluated the phylogenetic relationships between the major lineages. We described the gene rearrangement patterns of Cnidaria. Anthozoans had significantly greater mitochondrial genome size and lower A + T content than medusozoans. Most of the protein-coding genes in anthozoans such as COX 13, ATP6, and CYTB displayed a faster rate of evolution based on selection analysis. There were 19 distinct patterns of mitochondrial gene order, including 16 unique gene orders in anthozoans and 3 mtDNA gene orders pattern in medusozoans, were identified among cnidarians. The gene order arrangement suggested that a linearized mtDNA structure may be more conducive to Medusozoan mtDNA stability. Based on phylogenetic analyses, the monophyly of the Anthozoa was strongly supported compared to previous mitochondrial genome-based analyses rather than octocorals forming a sister group relationship with medusozoans. In addition, Staurozoa were more closely related to Anthozoa than to Medusozoa. In conclusion, these results largely support the traditional phylogenetic view of the relationships of cnidarians and provide new insights into the evolutionary processes for studying the most ancient animal radiations.

3.
J Basic Microbiol ; 62(12): 1514-1525, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35835725

ABSTRACT

An estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE. The α-diversity of PA community was significantly higher than FL community, and analysis of similarity showed significantly different (Global R = 0.2809, p < 0.005). RDA revealed that phosphate (PO4 3- ) was significantly correlated with PA bacterial community abundance (p < 0.05). An ecological null model showed that both PA and FL bacterial communities were mainly influenced by stochastic processes (PA: 100%, FL: 70%), which PA attached to nutrient particles and are less affected by environmental filtration. Dispersal limitation (50%) was the main assembly process of the PA community, while homogeneous selection (30%) and drift (30%) were important processes in the FL community assembly. The available substrate for colonization limits the transformation from FL to PA bacteria. This study would improve our understanding of FL and PA bacterial community structure and factors affecting assembly process in estuarine environments.


Subject(s)
Estuaries , Rivers , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Stochastic Processes , China
4.
Mitochondrial DNA B Resour ; 5(3): 3640-3642, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33367041

ABSTRACT

In this study, the complete mitochondrial genome of Hyphessobrycon herbertaxelrodi is presented, and we also discussed its mitochondrial characteristics. The full length of the mitochondrial genome was 17,417 bp, including 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S), 22 transfer RNA genes, 1 non-coding control region (D-loop), and 1 origin of replication on the light-strand. The total nucleotide composition of mitochondrial DNA was 29.76%A, 29.88%T, 25.35%C, 15.01%G, and AT was 59.64%. The phylogenetic tree suggested that H. herbertaxelrodi shared the most recent common ancestor with Astyanax giton, Grundulus bogotensis, Astyanax paranae, and Oligosarcus argenteus.

5.
Mitochondrial DNA B Resour ; 5(3): 3371-3373, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33458173

ABSTRACT

The Dotted Gizzard Shad (Konosirus punctatus) was one of the most important commercial fish species in China, Japan and Korea. In this study, the complete mitochondrial genome of K. punctatus was presented. The full length of the mitochondrial genome was 16,705 bp, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNA genes, one non-coding control region (CR) and one origin of replication on the light-strand. The total nucleotide composition of mitochondrial DNA was 25.79%A, 25.09%T, 29.05%C, 20.08%G, and AT was 50.88%. The mitochondrial genome provides an important resource for solving taxonomic problems and studying molecular evolution.

6.
Commun Biol ; 2: 244, 2019.
Article in English | MEDLINE | ID: mdl-31263788

ABSTRACT

Loss of genetic diversity is known to decrease the fitness of species and is a critical factor that increases extinction risk. However, there is little evidence for higher vulnerability and extinction risk in endangered species based on genomic differences between endangered and non-endangered species. This is true even in the case of functional loci, which are more likely to relate to the fitness of species than neutral loci. Here, we compared the genome-wide genetic diversity, proportion of duplicated genes (PD), and accumulation of deleterious variations of endangered island endemic (EIE) plants from four genera with those of their non-endangered (NE) widespread congeners. We focused on exhaustive sequences of expressed genes obtained by RNA sequencing. Most EIE species exhibited significantly lower genetic diversity and PD than NE species. Additionally, all endangered species accumulated deleterious variations. Our findings provide new insights into the genomic traits of EIE species.


Subject(s)
Endangered Species , Genetic Variation , Genome, Plant , Islands , Plants/genetics , Contig Mapping , Ecology , Genomics , Geography , Heterozygote , Nucleotides/genetics , Risk , Sequence Analysis, RNA , Species Specificity
7.
Genome Biol Evol ; 11(2): 552-564, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30698705

ABSTRACT

The capacity for regeneration varies greatly among metazoans, yet little is known about the evolutionary processes leading to such different regeneration abilities. In particular, highly regenerative species such as planarians and cnidarians can regenerate the whole body from an amputated fragment; however, a common molecular basis, if any, among these species remains unclear. Here, we show that genes encoding Jumonji C (JmjC) domain-containing proteins are associated with high regeneration ability. We classified 132 fully sequenced metazoans into two groups with high or low regeneration abilities and identified 118 genes conserved in the high regenerative group that were lost in species in the low regeneration group during evolution. Ninety-six percent of them were JmjC domain-encoding genes. We denoted the candidate genes as high regenerative species-specific JmjC domain-encoding genes (HRJDs). We observed losses of HRJDs in Helobdella robusta, which lost its high regeneration ability during evolution based on phylogenetic analysis. By RNA sequencing analyses, we observed that HRJD orthologs were differentially expressed during regeneration in two Cnidarians, as well as Platyhelminthes and Urochordata, which are highly regenerative species. Furthermore, >50% of the head and tail parts of amputated planarians (Dugesia japonica) died during regeneration after RNA interference of HRJD orthologs. These results indicate that HRJD are strongly associated with a high regeneration ability in metazoans. HRJD paralogs regulate gene expression by histone demethylation; thus, HRJD may be related to epigenetic regulation controlling stem cell renewal and stem cell differentiation during regeneration. We propose that HRJD play a central role in epigenetic regulation during regeneration.


Subject(s)
Ciona intestinalis/genetics , Hydra/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Planarians/genetics , Regeneration/genetics , Animals , Phylogeny
8.
Mitochondrial DNA B Resour ; 4(2): 3691-3692, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-33366146

ABSTRACT

The complete mitochondrial genome of Ostorhinchus fleurieu was first determined, which was 16,521 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a putative control region and one origin of replication on the light-strand. The overall base composition included C(29.2%), A(26.7%), T(26.7%) and G(17.4%). Moreover, the 13 PCGs encoded 3800 amino acids in total, twelve of which used the initiation codon ATG except for COI started with GTG. Most of them ended with complete stop codon, whereas three protein-coding genes (COII, ND4 and Cytb) used incomplete stop codon and represented as T. The phylogenetic tree based on the Neighbour Joining method was constructed to provide relationship within Apogoninae, which could be a useful basis for management of this species.

SELECTION OF CITATIONS
SEARCH DETAIL
...