Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 715
Filter
1.
Reprod Domest Anim ; 59(6): e14631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828566

ABSTRACT

This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.


Subject(s)
Antioxidants , Embryonic Development , Ginsenosides , In Vitro Oocyte Maturation Techniques , Mitochondria , Oocytes , Animals , Antioxidants/pharmacology , Ginsenosides/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Mitochondria/drug effects , Embryonic Development/drug effects , Oocytes/drug effects , Female , Swine , Reactive Oxygen Species/metabolism , Embryo Culture Techniques/veterinary
3.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
4.
Cancer Cell ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759655

ABSTRACT

In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative molecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early and monoclonal seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of APOE+/CD163+ macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+ macrophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results provide implications for the early detection and treatment of AM.

5.
Adv Mater ; : e2402947, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743762

ABSTRACT

Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices.

6.
J Phys Chem A ; 128(19): 3890-3899, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38691833

ABSTRACT

We investigate the reaction pathways of nine important CO2-related reactions using the revDSD-PBEP86-D3(BJ)/jun-cc-pV(T+d)Z level and simultaneously employ an accurate composite method (jun-Cheap) based on coupled-cluster (CC) theory. Subsequently, the Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is solved to calculate the temperature- and pressure-dependent rate constants. This work investigates reactions involving transition states that have been overlooked in previous literature, including the dissociation of singlet-state C3O2, the triple channel formation of C2O + CO to form C3O2, and the formation of O3 + CO. The results show that CO3 is highly prone to dissociation at high temperatures. Finally, the kinetic data show that over a wide temperature range, our calculations are consistent with previous experimental measurements. The majority of the reaction rate constants studied exhibit significant pressure dependence, while the O3 + CO reaction is pressure-independent at low temperatures. These results are instrumental in the development of detailed kinetic models for the CO2 radiolysis reaction network.

7.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798672

ABSTRACT

Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.

8.
Adv Rheumatol ; 64(1): 44, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816873

ABSTRACT

OBJECTIVES: Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, gut microbiota and its metabolites contribute to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear. In this study, we aimed to investigate whether gut microbiota and their metabolites alter the effects of high fat diet (HFD) on the severity of collagen-induced arthritis (CIA) in mice. METHODS: Briefly, mice were divided into normal group (N), CIA model group (C), HFD group (T), and HFD CIA group (CT). Hematoxylin and Eosin staining(HE) and Safranin O-fast green staining were conducted, and levels of blood lipid and inflammatory cytokines were measured. 16S rDNA sequencing technique and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were performed to explore changes in the microbiota structure to further reveal the pathomechanism of HFD on CIA. RESULTS: HFD aggravated the severity of CIA in mice. The CT group had the highest proportion of microbial abundance of Blautia, Oscillibacter, Ruminiclostridium-9, and Lachnospiraceae UCG 006 at the genus level, but had a lower proportion of Alistipes. Additionally, the fecal metabolic phenotype of the combined CT group shows significant changes, with differential metabolites enriched in 9 metabolic pathways, including primary bile acid biosynthesis, arginine biosynthesis, sphingolipid metabolism, purine metabolism, linoleic acid metabolism, oxytocin signaling pathway, aminoacyl-tRNA biosynthesis, the pentose phosphate pathway, and sphingolipid signaling pathway. Correlation analysis revealed that some of the altered gut microbiota genera were strongly correlated with changes in fecal metabolites, total cholesterol (TC), triglyceride (TG), and inflammatory cytokine levels. CONCLUSIONS: This study shows that HFD may aggravate inflammatory reaction in CIA mice by altering the gut microbiota and metabolic pathways.


Subject(s)
Arthritis, Experimental , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Mice , Arthritis, Experimental/microbiology , Arthritis, Experimental/metabolism , Cytokines/metabolism , Male , Severity of Illness Index , Obesity/metabolism , Obesity/microbiology , Disease Models, Animal
9.
Int J Biol Macromol ; 269(Pt 1): 132018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702002

ABSTRACT

Toll-like receptor 8 (TLR8), an important innate immune receptor recognizing single stranded RNA and the antiviral imidazoquinoline compounds, can activate intracellular signaling pathway and produce an inflammatory response to kill and eliminate pathogens. However, the molecular regulation mechanisms of TLR8 signaling and its anti-infection activity are not fully elucidated. Our previous transcriptome analysis of porcine TLR8 (pTLR8) signaling suggested the immune checkpoint receptor TIM-3 as the potential regulator for pTLR8. Here we investigated TIM-3 in the regulation of pTLR8 signaling and its anti-infection activity. Our results showed that porcine TIM-3 is upregulated by pTLR8 signaling and TIM-3 inhibits pTLR8 signaling activity in a negative feedback way. Accordingly, TIM-3 disturbs pTLR8 mediated anti-bacterial and anti-viral activity. Mechanistically, TIM-3 suppresses PI3K-AKT pathway by inhibiting the TLR8-PI3K p85 interaction and subsequent AKT phosphorylation which is essential for TLR8 signaling and anti-infection activity. Therefore, our study reveals new insights into innate immune TLR8 signaling and its anti-infection function.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Toll-Like Receptor 8 , Animals , Toll-Like Receptor 8/metabolism , Signal Transduction/drug effects , Hepatitis A Virus Cellular Receptor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Swine , Phosphatidylinositol 3-Kinases/metabolism , Immunity, Innate/drug effects , Humans , Phosphorylation/drug effects
10.
Front Endocrinol (Lausanne) ; 15: 1335611, 2024.
Article in English | MEDLINE | ID: mdl-38818507

ABSTRACT

Objective: This research aimed to elucidate the relationship between testosterone levels and serum soluble klotho (S-klotho) concentrations in females aged 40-79 years using the National Health and Nutrition Examination Survey (NHANES) dataset. Design: Associations between testosterone and S-klotho were assessed through multivariable linear regression methodologies, spanning nonadjusted, minimally adjusted, and fully adjusted models. Settings: The investigation was conducted as a cross-sectional analysis utilizing the NHANES database. Participants: From 20,146 NHANES participants between 2013 and 2016, 2,444 females met the stipulated inclusion and exclusion criteria. Results: Free androgen index (FAI) showcased a negative correlation with S-klotho levels across all regression models (nonadjusted: ß -7.08, 95% CI -13.39- -0.76; minimally adjusted: ß -9.73, 95% CI -16.6- -2.84; fully adjusted: ß -7.63, 95% CI -14.75-0.51). Conversely, total testosterone did not exhibit significant associations with S-klotho across the models. In the nonadjusted model, estradiol was positively associated with S-klotho concentrations (ß 0.14, 95% CI 0.05-0.23), but this significance was not retained in subsequent regression models. Conclusion: Findings suggest that in U.S. females aged 40-79 years, FAI negatively correlates with S-klotho concentrations, while there is the lack of significant associations for total testosterone and estradiol.


Subject(s)
Klotho Proteins , Nutrition Surveys , Testosterone , Humans , Female , Middle Aged , Testosterone/blood , Adult , Aged , Cross-Sectional Studies , Glucuronidase/blood , Databases, Factual , Biomarkers/blood
12.
Acta Pharm Sin B ; 14(5): 2228-2246, 2024 May.
Article in English | MEDLINE | ID: mdl-38799646

ABSTRACT

Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.

13.
Heliyon ; 10(7): e28469, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560267

ABSTRACT

There is mounting evidence that coronavirus disease 2019 (COVID-19) can cause immune dysregulation. The consequence of this immune dysregulation may contribute to susceptibility to tuberculosis (TB). Thyroid gland involvement by TB is extremely uncommon and typically the result of disseminated infection. It can be hard to diagnose because there are no identifiable symptoms. We present the case of a Chinese patient who had a fever again after COVID-19 infection that was finally diagnosed as thyroid tuberculosis with a cold abscess. Clinicians should maintain a high index of suspicion for high-risk patients from endemic regions with medical comorbidities, such as immunocompromised disease and malnutrition.

14.
Research (Wash D C) ; 7: 0341, 2024.
Article in English | MEDLINE | ID: mdl-38665848

ABSTRACT

Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a "multiple vectors in one AAV" strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof -/- mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.

15.
J Hepatol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670321

ABSTRACT

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of nonalcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. This study investigates the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in NASH pathogenesis. METHODS: Hepatic EFHD2 expression was characterized in NASH patients and two diet-induced NASH mouse models. Single-cell RNA-sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma (HCC) were assessed. Molecular mechanisms underlying EFHD2 function were investigated, along with its potential as a therapeutic target by chemical and genetic means. RESULTS: EFHD2 expression was significantly elevated in liver tissue macrophages/monocytes in both NASH patients and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related HCC. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of interferon-γ receptor-2 (IFNγR2) onto the plasma membrane. This interaction mediates IFNγ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a developed stapled α-helical peptide targeting EFHD2 demonstrated its efficacy in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all NAFLD patients progress to NASH. A key challenge is identifying the factors triggering inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of IFNγ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings suggest EFHD2 as a promising target for drug development aimed at NASH treatment.

16.
Article in English | MEDLINE | ID: mdl-38686439

ABSTRACT

BACKGROUND AND AIM: The purpose of the current study was to investigate the predictive value of hepatitis B core-related antigen (HBcrAg) on the occurrence and recurrence of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). METHODS: We searched PubMed, Embase, Scopus, and Web of Science from database inception to April 6, 2023. Pooled hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was calculated for the occurrence and recurrence of HCC. RESULTS: Of the 464 articles considered, 18 articles recruiting 10 320 patients were included. The pooled results showed that high serum HBcrAg level was an independent risk factor for the occurrence of HCC in CHB patients (adjusted HR = 3.12, 95% CI: 2.40-4.06, P < 0.001, I2 = 43.2%, P = 0.043; OR = 5.65, 95% CI: 3.44-5.82, P < 0.001, I2 = 0.00%, P = 0.42). Further subgroup analysis demonstrated that the predictive ability of HBcrAg for the occurrence of HCC is not influenced by the hepatitis B e antigen (HBeAg) status or the use of nucleoside/nucleotide analogs (NAs). In addition, our meta-analysis also suggests that HBcrAg is a predictor of HCC recurrence (adjusted HR = 1.71, 95% CI: 1.26-2.32, P < 0.001, I2 = 7.89%, P = 0.031). CONCLUSIONS: For patients with CHB, serum HBcrAg may be a potential predictive factor for the occurrence of HCC, regardless of HBeAg status or NA treatment. It may also serve as a novel prognostic biomarker for the recurrence of HCC. More studies are needed to confirm our conclusions.

17.
Front Endocrinol (Lausanne) ; 15: 1370457, 2024.
Article in English | MEDLINE | ID: mdl-38633753

ABSTRACT

Introduction: Serum Klotho (S-Klotho) is a transmembrane protein holds pivotal roles in anti-aging. The Dietary Inflammation Index (DII), a meticulously dietary tool, quantifies the inflammatory potential of an individual's diet. The existing research strongly suggests that a low DII diet plays a significant role in delaying aging and reducing aging-related symptoms in males. Testosterone could potentially act as a mediating intermediary between DII and S-Klotho. However, this aspect remains unexplored. This study aims to investigate the potential causal link of testosterone between DII and S-Klotho in males. Methods: We utilized data from National Health and Nutrition Examination Survey (NHANES) which focused on male participants from 2013-2016. Mediation analyses were used to investigate the effects of testosterone (TT), free testosterone (FT), and free androgen index (FAI) on the DII-S-Klotho relationship, using three modes adjusting for covariates. Results: Mediation analysis unveiled a significant inverse correlation between DII and S-Klotho levels (model 1: c = -14.78, p = 0.046). The interaction between DII and S-Klotho was modulated by TT in model 1 (ab = -1.36; 95% CI: -5.59, -0.55; p = 0.008), but lost significance after adjustments (model 2: ab = -0.39; 95% CI: -4.15, 1.66; p = 0.378; model 3: ab = -0.59; 95% CI: -4.08, 2.15; p = 0.442). For FT, the mediating impact was not statistically significant (model 1: ab = 0.43; 95% CI: -0.51, 5.44; p = 0.188; model 2: ab = 0.72; 95% CI: -0.26, 5.91; p = 0.136; model 3: ab = 0.84; 95% CI: -0.02, 8.06; p = 0.056). Conversely, FAI consistently influenced the DII-S-Klotho relationship (model 1: ab = 2.39; 95% CI: 0.69, 9.42; p = 0.002), maintaining significance after adjustments (model 2: ab = 3.2; 95% CI: 0.98, 11.72; p = 0.004; model 3: ab = 3.15; 95% CI: 0.89, 14.51; p = 0.026). Discussion: This study observed no mediating influence of TT or FT on the correlation between DII and S-Klotho after covariate control. Remarkably, FAI continued to significantly mediate the DII-S-Klotho connection even following covariate adjustment, although its significance in males warrants careful consideration.


Subject(s)
Diet , Klotho Proteins , Testosterone , Humans , Male , Aging , Diet/adverse effects , Inflammation/metabolism , Nutrition Surveys , Testosterone/blood , Testosterone/chemistry , Klotho Proteins/blood , Klotho Proteins/chemistry
18.
Reprod Domest Anim ; 59(4): e14565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646981

ABSTRACT

Mangiferin (MGN) is primarily found in the fruits, leaves, and bark of plants of the Anacardiaceae family, including mangoes. MGN exhibits various pharmacological effects, such as protection of the liver and gallbladder, anti-lipid peroxidation, and cancer prevention. This study aimed to investigate the effects of MGN supplementation during in vitro culture (IVC) on the antioxidant capacity of early porcine embryos and the underlying mechanisms involved. Porcine parthenotes in the IVC medium were exposed to different concentrations of MGN (0, 0.01, 0.1, and 1 µM). The addition of 0.1 µM MGN significantly increased the blastocyst formation rate of porcine embryos while reducing the apoptotic index and autophagy. Furthermore, the expression of antioxidation-related (SOD2, GPX1, NRF2, UCHL1), cell pluripotency (SOX2, NANOG), and mitochondria-related (TFAM, PGC1α) genes was upregulated. In contrast, the expression of apoptosis-related (CAS3, BAX) and autophagy-related (LC3B, ATG5) genes decreased after MGN supplementation. These findings suggest that MGN improves early porcine embryonic development by reducing oxidative stress-related genes.


Subject(s)
Embryo Culture Techniques , Embryonic Development , Oxidative Stress , Xanthones , Animals , Oxidative Stress/drug effects , Embryonic Development/drug effects , Xanthones/pharmacology , Embryo Culture Techniques/veterinary , Apoptosis/drug effects , Antioxidants/pharmacology , Autophagy/drug effects , Swine , Blastocyst/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Parthenogenesis
19.
Cell Signal ; 117: 111104, 2024 05.
Article in English | MEDLINE | ID: mdl-38373667

ABSTRACT

BACKGROUND: Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD: Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT: Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION: Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , RNA, Long Noncoding , Male , Humans , Anoikis/genetics , RNA, Long Noncoding/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Flow Cytometry , Gene Expression
20.
Adv Sci (Weinh) ; 11(16): e2305715, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417117

ABSTRACT

Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Gasdermins , Pyroptosis , Animals , Humans , Male , Mice , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Disease Models, Animal , Liver Failure/metabolism , Liver Failure/chemically induced , Mice, Inbred C57BL , Mice, Knockout , Pyroptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...