Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2628-2634, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384596

ABSTRACT

Understanding the changes and influencing factors of soil organic carbon density (SOCD) during the conversion of uncultivated natural soil to croplands is of great significance for the assessment of carbon sequestration in arid areas. In this study, we compared SOCD in the uncultivated soil and that in croplands with different cultivation years (2-5, 12-15, 25-30, 40-50 years) in the Northeastern Ulan Buh Desert. The change of SOCD and its influencing factors at 0-2 m soil depth during the conversion of uncultivated natural soil to croplands were explored by the method of replacing time with space. The results showed that SOCD at the shallow soil depth (0-0.4 m) in croplands increased continuously with cultivation years, but basically at low levels (0.990-1.983 kg·m-2). The SOCD at deep soil (1.2-2 m) increased in the croplands with longer cultivation years (25-30 and 40-50 years), whereas no obvious change trends in both the croplands with shorter cultivation years (2-5 and 12-15 years) and the uncultivated natural soil. The SOCD at deep soil (1.2-2 m) were relatively large (28.9%-38.6%) of the 0-2 m soil depth of uncultivated natural soil and croplands with different cultivation years. The vertical distribution of SOCD in croplands with different cultivation years were well fitted by quadratic functions (with R2 ranging from 0.757 to 0.972). It was noteworthy that soil clay and silt contents had dominant influences on SOCD at all the soil profile (0-2 m), and that cultivation years mainly contributed to the accumulation of SOC at the shallow soil (0-0.4 m).


Subject(s)
Carbon , Soil , Carbon/analysis , Agriculture , China , Crops, Agricultural
2.
Clin Transl Med ; 11(4): e379, 2021 04.
Article in English | MEDLINE | ID: mdl-33931972

ABSTRACT

BACKGROUND AND AIMS: 4-phenylbutyric acid (4-PBA) is a low molecular weight fatty acid that is used in clinical practice to treat inherited urea cycle disorders. In previous reports, it acted as a chemical chaperone inhibiting endoplasmic reticulum (ER) stress and unfolded protein response signaling. A few studies have suggested its function against hepatic fibrosis in mice models. However, its role in hepatocarcinogenesis remained unknown. METHODS: 4-PBA was administered alone or in combination with diethylnitrosamine to investigate its long-term effect on liver tumorigenesis. The role of 4-PBA in oncogene-induced hepatocellular carcinoma (HCC) mice model using sleeping beauty system co-expressed with hMet and ß-catenin point mutation (S45Y) was also observed. RNA-seq and PCR array were used to screen the pathways and genes involved. In vitro and in vivo studies were conducted to explore the effect of 4-PBA on liver and validate the underlying mechanism. RESULTS: 4-PBA alone didn't cause liver tumor in long term. However, it promoted liver tumorigenesis in HCC mice models via initiation of liver cancer stem cells (LCSCs) through Wnt5b-Fzd5 mediating ß-catenin signaling. Peroxisome proliferator-activated receptors (PPAR)-α induced by 4-PBA was responsible for the activation of ß-catenin signaling. Thus, intervention of PPAR-α reversed 4-PBA-induced initiation of LCSCs and HCC development in vivo. Further study revealed that 4-PBA could not only upregulate the expression of PPAR-α transcriptionally but also enhance its stabilization via protecting it from proteolysis. Moreover, high PPAR-α expression predicted poor prognosis in HCC patients. CONCLUSIONS: 4-PBA could upregulate PPAR-α to initiate LCSCs by activating ß-catenin signaling pathway, promoting HCC at early stage. Therefore, more discretion should be taken to monitor the potential tumor-promoting effect of 4-PBA under HCC-inducing environment.


Subject(s)
Carcinoma, Hepatocellular/chemically induced , Liver Neoplasms/chemically induced , Neoplastic Stem Cells/drug effects , PPAR alpha/metabolism , Phenylbutyrates/pharmacology , Animals , Carcinogenesis/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Wnt Signaling Pathway/drug effects
3.
Zool Res ; 42(3): 335-338, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33998180

ABSTRACT

The global outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as of 8 May 2021, has surpassed 150 700 000 infections and 3 279 000 deaths worldwide. Evidence indicates that SARS-CoV-2 RNA can be detected on particulate matter (PM), and COVID-19 cases are correlated with levels of air pollutants. However, the mechanisms of PM involvement in the spread of SARS-CoV-2 remain poorly understood. Here, we found that PM exposure increased the expression level of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in several epithelial cells and increased the adsorption of the SARS-CoV-2 spike protein. Instillation of PM in a hACE2 mouse model significantly increased the expression of ACE2 and Tmprss2 and viral replication in the lungs. Furthermore, PM exacerbated the pulmonary lesions caused by SARS-CoV-2 infection in the hACE2 mice. In conclusion, our study demonstrated that PM is an epidemiological factor of COVID-19, emphasizing the necessity of wearing anti-PM masks to cope with this global pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/chemically induced , COVID-19/immunology , Particulate Matter/adverse effects , SARS-CoV-2 , Adsorption/drug effects , Animals , Disease Susceptibility/chemically induced , Disease Susceptibility/immunology , Epithelial Cells/metabolism , Mice , Mice, Inbred Strains , Particulate Matter/chemistry , RNA, Viral/analysis , SARS-CoV-2/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
4.
Transl Lung Cancer Res ; 9(4): 1516-1527, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32953523

ABSTRACT

BACKGROUND: Radiological manifestations of coronavirus disease 2019 (COVID-19) featured ground-glass opacities (GGOs), especially in the early stage, which might create confusion in differential diagnosis with early lung cancer. We aimed to specify the radiological characteristics of COVID-19 and early lung cancer and to unveil the discrepancy between them. METHODS: One hundred and fifty-seven COVID-19 patients and 374 early lung cancer patients from four hospitals in China were retrospectively enrolled. Epidemiological, clinical, radiological, and pathological characteristics were compared between the two groups using propensity score-matched (PSM) analysis. RESULTS: COVID-19 patients had more distinct symptoms, tended to be younger (P<0.0001), male (P<0.0001), and had a higher body mass index (P=0.014). After 1:1 PSM, 121 matched pairs were identified. Regarding radiological characteristics, patients with a single lesion accounted for 17% in COVID-19 and 89% in lung cancer (P<0.0001). Most lesions were peripherally found in both groups. Lesions in COVID-19 involved more lobes (median 3.5 vs. 1; P<0.0001) and segments (median 6 vs. 1; P<0.0001) and tended to have multiple types (67%) with patchy form (54%). Early lung cancer was more likely to have a single type (92%) with oval form (66%). Also, COVID-19 and early lung cancer either had some distinctive features on computed tomography (CT) images. CONCLUSIONS: Both COVID-19 and early lung cancers showed GGOs, with similar but independent features. The imaging characteristics should be fully understood and combined with epidemiological history, pathogen detection, laboratory tests, short-term CT reexamination, and pathological results to aid differential diagnosis.

5.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2347-2354, 2018 Jul.
Article in Chinese | MEDLINE | ID: mdl-30039674

ABSTRACT

From May to October in 2017, the sap flow, water consumption and the effects of environmental factors on the sap flow of Amorpha fruticosas with different stem diameters under different water and salt conditions were examined with the packaged sap flow measuring system in a secondary saline-alkali land of Ningxia Yellow River irrigation area. The sap flow rate showed a broad peak curve with no obvious phenomenon of 'midday break' in sunny days and a multi-peak curve in cloudy, overcast and rainy days. Weak sap flow was found at night. In the growing season (May - October), total sap flow of A. fruticosas with basal stem diameters of 13, 16 and 22 mm were 138.14, 206.06, 370.11 kg, respectively. The water consumption was largest in June and July, accounting for about 50% of the whole growing season, followed by May and August, and lowest in September and October. At both 0.5 h and day scales, photosynthetically active radiation (PAR) was the dominant meteorological factor affecting the sap flow. In the first growth stage (May 13th - August 19th), soil water in shallow layer (0-40 cm) had significant effect on the sap flow of A. fruticosas with three different diameters, and soil salt in shallow layer had significant inhibitory effect only on A. fruticosa with the diameter of 13 mm. In the second growth stage (August 20th - October 10th), soil water and soil salt had no significant effect on A. fruticosas with three different diameters. In summary, the A. fruticosas with diameters <13 mm was not suitable for planting in saline soil (electrical conductivity (EC)>2 dS·m-1), and individuals with diameters >16 mm could grow well in saline soil (EC=5 dS·m-1). Moreover, reasonable irrigation should be carried out in the vigorous growth stage of the A. fruticosas.


Subject(s)
Agricultural Irrigation , Fabaceae/physiology , Plant Stems/physiology , Alkalies , China , Rivers , Soil , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...