Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 10(1): 9956, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561760

ABSTRACT

The rapid urbanization in China has been associated with a growing hunger for energy consumption and steadily-increasing CO2 emissions. In this paper, an integrated system dynamics model composed of four sub-models is developed to simulate the urbanization and energy consumption in China from 1998 to 2050. Three scenarios are provided: accelerated economic development, emission reduction constraint, and low-carbon oriented. The result reveals that rapid economic growth and sufficient energy supply will foster China's urbanization in all three scenarios. Under the low carbon transition scenario, China's urbanization rate is expected to reach 76.41% in 2050, both reducing carbon emissions and promoting eco-friendly development. All three scenarios witness a dramatic growth of residential energy consumption and a steady increase of industrial energy consumption. China still has a long way to achieve the low-carbon transition goal. China should promote renewable resources and energy, pursue a low-carbon lifestyle, and reduce energy intensity over the next few decades.

2.
Sci Total Environ ; 586: 457-465, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28214120

ABSTRACT

Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches.

3.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3457-66, 2015 Nov.
Article in Chinese | MEDLINE | ID: mdl-26915203

ABSTRACT

Land use change is the core content of global change. To achieve sustainable land use planning, it is necessary to evaluate the habitat quality pattern and its spatio-temporal variation resulted from land use change, which can provide basis for the formulation of land management policy. Based on the analysis of land use change from 2000 to 2010, this study investigated the spatio-temporal variation of habitat quality pattern of Beijing-Tianjin-Hebei Area. We used the watershed profile sampling points and spatial autocorrelation analysis based on watershed subdivision. The results showed that the main land use change types from 2000 to 2010 in this area included the transition from cultivated land to construction land, the transition between forest and grassland, and the transition from water bodies to cultivated land. This land use/cover change process led to the decrease of heterogeneity of landscape structure and increase of fragmentation. The overall spatial pattern of habitat quality was that southeast and south areas were relatively lower, while north and west areas were relatively higher. The analysis based on watershed profile showed that the habitat quality of each watershed presented significant difference in each part. Habitat quality of most sampling points degraded in a way, while some improved compared with 2000. In general, the habitat quality of the bottom part of Luanhe River basin, the medium part of Bai-Chaobai-Chaobaixin River basin, the medium and the bottom part of Yongding River basin and medium part of Laozhang-Fudongpai- Beipai River basin were poor and volatile, while other parts were relatively good. There was a decreasing agglomeration characteristic of distribution of habitat quality in Beijing-Tianjin-Hebei Area under the disturbance of human activities. Areas of high habitat quality in 2000 were mainly located in Luanhe River basin and top part of Baihe basin. Areas of low habitat quality were mainly located in medium and bottom part of Yongding River basin and some parts of Chaobai River basin. However, the areas of high habitat quality and areas with low habitat quality of 2010 had both expanded towards southwest.


Subject(s)
Ecosystem , Environmental Monitoring , Spatio-Temporal Analysis , Beijing , Forests , Grassland , Human Activities
SELECTION OF CITATIONS
SEARCH DETAIL
...